Home
Class 11
MATHS
The number of vectors of unit length ...

The number of vectors of unit length perpendicular to vectors ` vec a=(1,1,0)a n d vec b=(0,1,1)` is a. one b. two c. three`` d. infinite

A

one

B

two

C

three

D

infinite

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of unit vectors that are perpendicular to the given vectors \( \vec{a} = (1, 1, 0) \) and \( \vec{b} = (0, 1, 1) \), we will follow these steps: ### Step 1: Calculate the cross product of vectors \( \vec{a} \) and \( \vec{b} \). The cross product \( \vec{a} \times \vec{b} \) is calculated using the determinant of a matrix formed by the unit vectors \( \hat{i}, \hat{j}, \hat{k} \) and the components of vectors \( \vec{a} \) and \( \vec{b} \): \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} \] Calculating this determinant, we have: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} = (1)(1) - (0)(1) = 1 \) 2. \( \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = (1)(1) - (0)(0) = 1 \) 3. \( \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = (1)(1) - (1)(0) = 1 \) Putting it all together: \[ \vec{a} \times \vec{b} = \hat{i}(1) - \hat{j}(1) + \hat{k}(1) = (1, -1, 1) \] ### Step 2: Find the magnitude of the cross product. The magnitude of \( \vec{a} \times \vec{b} \) is given by: \[ |\vec{a} \times \vec{b}| = \sqrt{(1)^2 + (-1)^2 + (1)^2} = \sqrt{1 + 1 + 1} = \sqrt{3} \] ### Step 3: Determine the unit vector in the direction of \( \vec{a} \times \vec{b} \). To find the unit vector \( \hat{n} \) in the direction of \( \vec{a} \times \vec{b} \): \[ \hat{n} = \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} = \frac{(1, -1, 1)}{\sqrt{3}} = \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \] ### Step 4: Identify the vectors perpendicular to both \( \vec{a} \) and \( \vec{b} \). Since unit vectors can point in both directions, there are two unit vectors perpendicular to both \( \vec{a} \) and \( \vec{b} \): 1. \( \hat{n} = \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \) 2. \( -\hat{n} = \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right) \) ### Conclusion Thus, the number of unit vectors of unit length that are perpendicular to both \( \vec{a} \) and \( \vec{b} \) is **2**. ### Answer: b. two ---

To find the number of unit vectors that are perpendicular to the given vectors \( \vec{a} = (1, 1, 0) \) and \( \vec{b} = (0, 1, 1) \), we will follow these steps: ### Step 1: Calculate the cross product of vectors \( \vec{a} \) and \( \vec{b} \). The cross product \( \vec{a} \times \vec{b} \) is calculated using the determinant of a matrix formed by the unit vectors \( \hat{i}, \hat{j}, \hat{k} \) and the components of vectors \( \vec{a} \) and \( \vec{b} \): \[ \vec{a} \times \vec{b} = \begin{vmatrix} ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise single correct answer type|28 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If vec c is a unit vector perpendicular to the vectors vec a\ a n d\ vec b write another unit vector perpendicular vec a\ a n d\ vec bdot

For any two vectors vec a\ a n d\ vec b , fin d\ ( vec axx vec b). vecbdot

Let vec a , vec b , vec c be three non-zero vectors such that vec c is a unit vector perpendicular to both vec aa n d vec b . If the between vec aa n d vec b is pi//6 , prove that [ vec a vec b vec c]^2=1/4| vec a|^2| vec b|^2dot

Vector vec c is perpendicular to vectors vec a=(2,-3,1)a n d vec b=(1,-2,3) and satisfies the condition vec cdot( hat i+2 hat j-7 hat k)=10. Then vector vec c is equal to a. (7,5,1) b. -7,-5,-1 c. 1,1,-1 d. none of these

If vec a , vec b ,\ vec c are three non coplanar mutually perpendicular unit vectors then [ vec a\ vec b\ vec c] is +-1 b. "\ "0"\ " c. -1 d. 2

vec aa n d vec b are two unit vectors that are mutually perpendicular. A unit vector that is equally inclined to vec a , vec ba n d vec axx vec b is a. 1/(sqrt(2))( vec a+ vec b+ vec axx vec b) b. 1/2( vec axx vec b+ vec a+ vec b) c. 1/(sqrt(3))( vec a+ vec b+ vec axx vec b) d. 1/3( vec a+ vec b+ vec axx vec b)

If vec a\ a n d\ vec b are mutually perpendicular unit vectors, write the value of | vec a+ vec b|dot

Let vec aa n d vec b be unit vectors that are perpendicular to each other. Then [ vec a+( vec axx vec b) vec b+( vec axx vec b) vec axx vec b] will always be equal to 1 b. 0 c. -1 d. none of these

If the angel between unit vectors vec aa n d vec b60^0 , then find the value of | vec a- vec b|dot

If a vector vec a is perpendicular to two non collinear vectors vec b\ a n d\ vec c ,\ t h e n\ \ vec a\ is perpendicular to every vector in the plane of \ vec b\ a n d\ vec c