Home
Class 12
MATHS
Let us consider the equation cos^4x/a+si...

Let us consider the equation `cos^4x/a+sin^4x/b=1/(a+b),x in[0,pi/2],a,bgt0`
the value of `sin^8x/b^3+cos^8x/a^3` is

A

`sin^4x/b=cos^4x/a`

B

`sinx/a=cosx/b`

C

`sin^4x/b^2=cos^4x/a^2`

D

`sin^2x/a=cos^2x/b`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\cos^4 x}{a} + \frac{\sin^4 x}{b} = \frac{1}{a+b} \] for \( x \in [0, \frac{\pi}{2}] \) and \( a, b > 0 \), we want to find the value of \[ \frac{\sin^8 x}{b^3} + \frac{\cos^8 x}{a^3}. \] ### Step-by-Step Solution: 1. **Start with the given equation**: \[ \frac{\cos^4 x}{a} + \frac{\sin^4 x}{b} = \frac{1}{a+b}. \] 2. **Multiply through by \( a + b \)**: \[ (a + b) \left( \frac{\cos^4 x}{a} + \frac{\sin^4 x}{b} \right) = 1. \] This simplifies to: \[ \frac{(a+b) \cos^4 x}{a} + \frac{(a+b) \sin^4 x}{b} = 1. \] 3. **Distributing the terms**: \[ \frac{b \cos^4 x + (a+b) \sin^4 x}{b} = 1. \] Rearranging gives: \[ b \cos^4 x + (a+b) \sin^4 x = b. \] 4. **Rearranging further**: \[ b \cos^4 x = b - (a+b) \sin^4 x. \] 5. **Dividing through by \( b \)**: \[ \cos^4 x = 1 - \frac{(a+b) \sin^4 x}{b}. \] 6. **Let \( \sin^2 x = y \)**, then \( \cos^2 x = 1 - y \): \[ (1 - y)^2 = 1 - \frac{(a+b)y^2}{b}. \] 7. **Expanding and simplifying**: \[ 1 - 2y + y^2 = 1 - \frac{(a+b)y^2}{b}. \] Rearranging gives: \[ -2y + y^2 + \frac{(a+b)y^2}{b} = 0. \] 8. **Combining like terms**: \[ y^2 \left(1 + \frac{(a+b)}{b}\right) - 2y = 0. \] Factoring out \( y \): \[ y \left( y + \frac{(a+b)}{b} - 2 \right) = 0. \] 9. **Finding \( y \)**: The solutions are \( y = 0 \) or \( y = 2 - \frac{(a+b)}{b} \). 10. **Substituting back to find \( \sin^8 x \) and \( \cos^8 x \)**: Using \( \sin^2 x = \frac{b}{a+b} \) and \( \cos^2 x = \frac{a}{a+b} \): \[ \sin^8 x = \left(\frac{b}{a+b}\right)^4 \quad \text{and} \quad \cos^8 x = \left(\frac{a}{a+b}\right)^4. \] 11. **Calculating the desired expression**: \[ \frac{\sin^8 x}{b^3} + \frac{\cos^8 x}{a^3} = \frac{b^4}{(a+b)^4 b^3} + \frac{a^4}{(a+b)^4 a^3} = \frac{b}{(a+b)^4} + \frac{a}{(a+b)^4} = \frac{a+b}{(a+b)^4}. \] 12. **Final result**: \[ = \frac{1}{(a+b)^3}. \] ### Final Answer: \[ \frac{1}{(a+b)^3}. \]

To solve the equation \[ \frac{\cos^4 x}{a} + \frac{\sin^4 x}{b} = \frac{1}{a+b} \] for \( x \in [0, \frac{\pi}{2}] \) and \( a, b > 0 \), we want to find the value of ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical Value Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|17 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Let us consider the equation cos^4x/a+sin^4x/b=1/(a+b),x in[0,pi/2],a,bgt0 The value of sin^2x in terms of a and b is

Number of roots of the equation (3+cos"x")^2=4-2sin^8x ,x in [0,5pi]a r e _________

Number of roots of the equation (3+cos"x")^2=4-2sin^8x ,x in [0,5pi]a r e _________

Solve the equation sin^4x+cos^4x-2sin^2x+(3sin^2 2x)/4=0

Solve the equation sin^3x.cos3x+cos^3x.sin3x+3/8=0

The number of solutions of the equation (3+cos x)^(2)=4-2sin^(8)x" in "[0, 9pi) is equal to

Evaluate: int(sin^4x)/(cos^8x)\ dx

The total number of solution of the equation sin^4 x +cos^4 x = sin x cos x in [0,2pi] is :

Let the solution set of the inequation n(sinx-1/2)(sinx-1/(sqrt(2)))lt=0 in [pi/2,pi] be A and let solution set of equation sin^-1(3x-4x^3)=3sin^-1x be B. Now define a function f:A->B.

Let the solution set of the inequation n(sinx-1/2)(sinx-1/(sqrt(2)))lt=0 in [pi/2,pi] be A and let solution set of equation sin^-1(3x-4x^3)=3sin^-1x be B. Now define a function f:A->B.