Home
Class 12
MATHS
If sin^4x/2+cos^4x/3=1/5then...

If `sin^4x/2+cos^4x/3=1/5`then

A

`tan^2x=2/3`

B

`sin^8x/8+cos^8x/27=1/125`

C

`tan^2x=1/3`

D

`sin^8/8+cos^8x/27=2/125`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{\sin^4 x}{2} + \frac{\cos^4 x}{3} = \frac{1}{5} \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \frac{\sin^4 x}{2} + \frac{\cos^4 x}{3} = \frac{1}{5} \] ### Step 2: Find a common denominator To combine the fractions on the left-hand side, we find a common denominator, which is 6: \[ \frac{3\sin^4 x}{6} + \frac{2\cos^4 x}{6} = \frac{1}{5} \] This simplifies to: \[ 3\sin^4 x + 2\cos^4 x = \frac{6}{5} \] ### Step 3: Substitute \(\cos^4 x\) Using the identity \(\cos^2 x = 1 - \sin^2 x\), we can express \(\cos^4 x\) as: \[ \cos^4 x = (1 - \sin^2 x)^2 \] Substituting this into the equation gives: \[ 3\sin^4 x + 2(1 - \sin^2 x)^2 = \frac{6}{5} \] ### Step 4: Expand the equation Expanding \(2(1 - \sin^2 x)^2\): \[ 2(1 - 2\sin^2 x + \sin^4 x) = 2 - 4\sin^2 x + 2\sin^4 x \] Now, substituting this back into the equation: \[ 3\sin^4 x + 2 - 4\sin^2 x + 2\sin^4 x = \frac{6}{5} \] Combining like terms: \[ 5\sin^4 x - 4\sin^2 x + 2 = \frac{6}{5} \] ### Step 5: Clear the fraction Multiply through by 5 to eliminate the fraction: \[ 25\sin^4 x - 20\sin^2 x + 10 = 6 \] This simplifies to: \[ 25\sin^4 x - 20\sin^2 x + 4 = 0 \] ### Step 6: Let \(y = \sin^2 x\) Letting \(y = \sin^2 x\), we can rewrite the equation as: \[ 25y^2 - 20y + 4 = 0 \] ### Step 7: Solve the quadratic equation Using the quadratic formula \(y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): \[ y = \frac{20 \pm \sqrt{(-20)^2 - 4 \cdot 25 \cdot 4}}{2 \cdot 25} \] Calculating the discriminant: \[ 400 - 400 = 0 \] Thus: \[ y = \frac{20}{50} = \frac{2}{5} \] ### Step 8: Find \(\cos^2 x\) Since \(y = \sin^2 x\): \[ \sin^2 x = \frac{2}{5} \] Then, using the Pythagorean identity: \[ \cos^2 x = 1 - \sin^2 x = 1 - \frac{2}{5} = \frac{3}{5} \] ### Step 9: Find \(\tan^2 x\) Now, we can find \(\tan^2 x\): \[ \tan^2 x = \frac{\sin^2 x}{\cos^2 x} = \frac{\frac{2}{5}}{\frac{3}{5}} = \frac{2}{3} \] ### Conclusion Thus, the solution to the original equation is: \[ \tan^2 x = \frac{2}{3} \]

To solve the equation \( \frac{\sin^4 x}{2} + \frac{\cos^4 x}{3} = \frac{1}{5} \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \frac{\sin^4 x}{2} + \frac{\cos^4 x}{3} = \frac{1}{5} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives JEE Advanced single correct answer type|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If sin^ 4 x/2+cos^4 x/3 =1/5 then

If sin^ 4 x/2+cos^4 x/3 =1/5 then

If (sin^4x)/2+(cos^4x)/3=1/5t h e n tan^2x=2/3 (b) (sin^8x)/8+(cos^8x)/(27)=1/(125) tan^2x=1/3 (d) (sin^8x)/8+(cos^8x)/(27)=2/(125)

If sinx+sin^2x+sin^3x=1 then find the value of cos^6x-4cos^4x+8cos^2x

If sinx+sin^2x+sin^3x=1 then find the value of cos^6x-4cos^4x+8cos^2x

if sin x + sin^2 x = 1 , then the value of cos^2 x + cos^4x is

if sin x + sin^2 x = 1 , then the value of cos^2 x + cos^4x is

If y=(sin^4x-cos^4x+sin^2xcos^2x)/(sin^4x+cos^4x+sin^2xcos^2x),x in (0,pi/2) , then (a) -3/2lt=ylt=1/2 (b) 1lt=ylt=1/2 (c) -5/3lt=ylt=1 (d) none of these

Using the identity sin^(4) x=3/8-1/2 cos 2x+1/8 cos 4x or otherwise, if the value of sin^(4)(pi/7)+sin^(4)((3pi)/(7))+sin^(4)((5pi)/(7))=a/b , where a and b are coprime, find the value of (a-b) .

Evaluate: (i) int sin^4x/cos^8xdx (ii) int1/sqrt(sin^3 x cos^5x)dx