Home
Class 12
MATHS
Solve sin^(2) theta-cos theta=1/4, 0 le ...

Solve `sin^(2) theta-cos theta=1/4, 0 le theta le 2pi`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^2 \theta - \cos \theta = \frac{1}{4} \) for \( 0 \leq \theta \leq 2\pi \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sin^2 \theta - \cos \theta = \frac{1}{4} \] Using the identity \( \sin^2 \theta = 1 - \cos^2 \theta \), we can rewrite the equation in terms of cosine: \[ 1 - \cos^2 \theta - \cos \theta = \frac{1}{4} \] ### Step 2: Rearrange the equation Next, we rearrange the equation: \[ 1 - \cos^2 \theta - \cos \theta - \frac{1}{4} = 0 \] This simplifies to: \[ -\cos^2 \theta - \cos \theta + \frac{3}{4} = 0 \] Multiplying through by -1 gives: \[ \cos^2 \theta + \cos \theta - \frac{3}{4} = 0 \] ### Step 3: Solve the quadratic equation This is a quadratic equation in terms of \( \cos \theta \). We can use the quadratic formula \( \cos \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1 \), \( b = 1 \), and \( c = -\frac{3}{4} \). Calculating the discriminant: \[ b^2 - 4ac = 1^2 - 4 \cdot 1 \cdot \left(-\frac{3}{4}\right) = 1 + 3 = 4 \] Now applying the quadratic formula: \[ \cos \theta = \frac{-1 \pm \sqrt{4}}{2 \cdot 1} = \frac{-1 \pm 2}{2} \] This gives us two possible solutions: \[ \cos \theta = \frac{1}{2} \quad \text{and} \quad \cos \theta = -\frac{3}{2} \] ### Step 4: Evaluate the solutions Since \( \cos \theta = -\frac{3}{2} \) is not possible (the range of cosine is \([-1, 1]\)), we only consider: \[ \cos \theta = \frac{1}{2} \] ### Step 5: Find the angles The angles for which \( \cos \theta = \frac{1}{2} \) in the interval \( 0 \leq \theta \leq 2\pi \) are: \[ \theta = \frac{\pi}{3} \quad \text{and} \quad \theta = \frac{5\pi}{3} \] ### Conclusion Thus, the solutions to the equation \( \sin^2 \theta - \cos \theta = \frac{1}{4} \) in the interval \( 0 \leq \theta \leq 2\pi \) are: \[ \theta = \frac{\pi}{3}, \quad \frac{5\pi}{3} \]

To solve the equation \( \sin^2 \theta - \cos \theta = \frac{1}{4} \) for \( 0 \leq \theta \leq 2\pi \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sin^2 \theta - \cos \theta = \frac{1}{4} \] Using the identity \( \sin^2 \theta = 1 - \cos^2 \theta \), we can rewrite the equation in terms of cosine: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.2|6 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.3|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise ILLUSTRATION|71 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve sin 2 theta+cos theta=0 .

Solve sin^(2)theta-costheta=1/4 for theta and write the values of theta in the interval 0 lethetale2pi

Knowledge Check

  • If 6sin^(2)theta - sin theta = 1 and 0 le theta le pi , what is the value of sin theta ?

    A
    `(1)/(6)`
    B
    `(1)/(3)`
    C
    `(1)/(2)`
    D
    19
  • Similar Questions

    Explore conceptually related problems

    Solve cos theta * cos 2 theta * cos 3 theta = (1)/( 4), 0 le theta le pi

    The number of solution of sec^(2) theta + cosec^(2) theta+2 cosec^(2) theta=8, 0 le theta le pi//2 is

    Solve 2 cos^(2) theta +3 sin theta=0 .

    Solve sin 3 theta + sin theta = sin 2 theta, 0 le theta le 2pi. Given the general solution.

    Let P (sin theta, cos theta) (0 le theta le 2pi) be a point and let OAB be a triangle with vertices (0,0) , (sqrt(3/2),0) and (0,sqrt(3/2)) Find theta if P lies inside triangle OAB.

    Let P (sin theta, cos theta) (0 le theta le 2pi) be a point and let OAB be a triangle with vertices (0,0) , (sqrt(3/2),0) and (0,sqrt(3/2)) Find theta if P lies inside triangle OAB

    Find all the values of theta satisfying the equation cos 2 theta - cos 8 theta + cos 6 theta =1, such that 0 le theta le pi.