Home
Class 12
MATHS
Solve: cottheta +cos e ctheta=sqrt(3)...

Solve: `cottheta` `+cos e ctheta=sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cot \theta + \csc \theta = \sqrt{3} \), we will follow these steps: ### Step 1: Rewrite the trigonometric functions We know that: \[ \cot \theta = \frac{\cos \theta}{\sin \theta} \quad \text{and} \quad \csc \theta = \frac{1}{\sin \theta} \] Substituting these into the equation gives: \[ \frac{\cos \theta}{\sin \theta} + \frac{1}{\sin \theta} = \sqrt{3} \] ### Step 2: Combine the fractions Since both terms on the left have the same denominator, we can combine them: \[ \frac{\cos \theta + 1}{\sin \theta} = \sqrt{3} \] ### Step 3: Cross-multiply Cross-multiplying gives: \[ \cos \theta + 1 = \sqrt{3} \sin \theta \] ### Step 4: Square both sides To eliminate the square root, we square both sides: \[ (\cos \theta + 1)^2 = 3 \sin^2 \theta \] ### Step 5: Expand both sides Expanding the left side: \[ \cos^2 \theta + 2 \cos \theta + 1 = 3 \sin^2 \theta \] Using the identity \( \sin^2 \theta = 1 - \cos^2 \theta \), we substitute for \( \sin^2 \theta \): \[ \cos^2 \theta + 2 \cos \theta + 1 = 3(1 - \cos^2 \theta) \] ### Step 6: Rearrange the equation Rearranging gives: \[ \cos^2 \theta + 2 \cos \theta + 1 = 3 - 3 \cos^2 \theta \] Combining like terms results in: \[ 4 \cos^2 \theta + 2 \cos \theta - 2 = 0 \] ### Step 7: Simplify the equation Dividing the entire equation by 2: \[ 2 \cos^2 \theta + \cos \theta - 1 = 0 \] ### Step 8: Factor the quadratic equation We can factor this quadratic: \[ (2 \cos \theta + 1)(\cos \theta - 1) = 0 \] ### Step 9: Solve for \( \cos \theta \) Setting each factor to zero gives us two cases: 1. \( 2 \cos \theta + 1 = 0 \) which leads to \( \cos \theta = -\frac{1}{2} \) 2. \( \cos \theta - 1 = 0 \) which leads to \( \cos \theta = 1 \) ### Step 10: Find the angles For \( \cos \theta = -\frac{1}{2} \): \[ \theta = \frac{2\pi}{3} + 2n\pi \quad \text{and} \quad \theta = \frac{4\pi}{3} + 2n\pi \] For \( \cos \theta = 1 \): \[ \theta = 2n\pi \] ### Final Solution Thus, the general solutions for \( \theta \) are: \[ \theta = 2n\pi, \quad \theta = \frac{2\pi}{3} + 2n\pi, \quad \theta = \frac{4\pi}{3} + 2n\pi \] ---

To solve the equation \( \cot \theta + \csc \theta = \sqrt{3} \), we will follow these steps: ### Step 1: Rewrite the trigonometric functions We know that: \[ \cot \theta = \frac{\cos \theta}{\sin \theta} \quad \text{and} \quad \csc \theta = \frac{1}{\sin \theta} \] Substituting these into the equation gives: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.7|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.8|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.5|5 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve: sqrt(3) cos theta+sintheta=sqrt(2)

Solve : sqrt3 sin theta - cos theta = sqrt2.

If cottheta=3/4 , prove that sqrt((sectheta-cos e c\ theta)/(sectheta+cos e c\ theta))=1/(sqrt(7))

Solve the equation 4cos^(2)theta+sqrt(3)=2(sqrt(3)+1)costheta .

If sec(theta+alpha)+sec(theta-alpha)=2\ s e ctheta, prove that costheta=+-sqrt(2)cosalpha/2dot

Solve: cot\ theta/2-cottheta=cosec\ theta/2

Prove the following identities: (sintheta)/(cottheta+cos e ctheta)=2+(sintheta)/(cottheta-cos e ctheta)

Prove the following identity: (1+cottheta-cos e ctheta)(1+t a ntheta+s e ctheta)=2

Find the general solutions of the following equation: cos e ctheta=\ -sqrt(2)

The value of sqrt((1+costheta)/(1-costheta)) is (a) cottheta-cos e c\ theta (b) cos e c\ theta+cottheta (c) cos e c^2theta+cot^2theta (d) (cottheta+cos e c\ theta)^2