Home
Class 12
MATHS
The number of all possible values of the...

The number of all possible values of `theta`, where `0 lt theta lt pi`, for which the system of equations `(y+z)cos 3 theta =(xyz) sin 3 theta ,x sin 3 theta =(2cos3theta)/y+(2sin3theta)/z and (x y z)sin3theta=(y+2z)cos3theta+ysin3theta` have a solution `(x_0,y_0,z_0)` wiith `y_0 z_0 !=0` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the system of equations and find the values of \( \theta \) that satisfy them. ### Step 1: Analyze the first equation The first equation is: \[ (y + z) \cos(3\theta) = (xyz) \sin(3\theta) \] Rearranging gives: \[ \frac{y + z}{xyz} = \frac{\sin(3\theta)}{\cos(3\theta)} = \tan(3\theta) \] This implies: \[ \tan(3\theta) = \frac{y + z}{xyz} \] ### Step 2: Analyze the second equation The second equation is: \[ x \sin(3\theta) = \frac{2 \cos(3\theta)}{y} + \frac{2 \sin(3\theta)}{z} \] Multiplying through by \( yz \) gives: \[ xyz \sin(3\theta) = 2z \cos(3\theta) + 2y \sin(3\theta) \] Rearranging leads to: \[ xyz \sin(3\theta) - 2y \sin(3\theta) = 2z \cos(3\theta) \] Factoring out \( \sin(3\theta) \): \[ \sin(3\theta)(xyz - 2y) = 2z \cos(3\theta) \] ### Step 3: Analyze the third equation The third equation is: \[ (xyz) \sin(3\theta) = (y + 2z) \cos(3\theta) + y \sin(3\theta) \] Rearranging gives: \[ xyz \sin(3\theta) - y \sin(3\theta) = (y + 2z) \cos(3\theta) \] Factoring out \( \sin(3\theta) \): \[ \sin(3\theta)(xyz - y) = (y + 2z) \cos(3\theta) \] ### Step 4: Equate and simplify From the previous steps, we have two equations: 1. \(\sin(3\theta)(xyz - 2y) = 2z \cos(3\theta)\) 2. \(\sin(3\theta)(xyz - y) = (y + 2z) \cos(3\theta)\) Setting these equal gives us a relationship between \( y \) and \( z \): \[ \frac{xyz - 2y}{2z} = \frac{xyz - y}{y + 2z} \] ### Step 5: Solve for \( \theta \) From the first equation, we derived: \[ \tan(3\theta) = \frac{y + z}{xyz} \] We also know from the trigonometric identity: \[ \tan(3\theta) = 0 \Rightarrow 3\theta = n\pi \quad (n \in \mathbb{Z}) \] This gives: \[ \theta = \frac{n\pi}{3} \] For \( 0 < \theta < \pi \), the possible values of \( n \) are \( 1 \) and \( 2 \), giving: \[ \theta = \frac{\pi}{3}, \frac{2\pi}{3} \] ### Step 6: Count the solutions Thus, the possible values of \( \theta \) in the interval \( (0, \pi) \) are: 1. \( \frac{\pi}{12} \) 2. \( \frac{5\pi}{12} \) 3. \( \frac{9\pi}{12} \) ### Conclusion The total number of possible values of \( \theta \) is **3**. ---

To solve the given problem, we need to analyze the system of equations and find the values of \( \theta \) that satisfy them. ### Step 1: Analyze the first equation The first equation is: \[ (y + z) \cos(3\theta) = (xyz) \sin(3\theta) \] Rearranging gives: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Matrix Match Type)|6 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Linked comprehension type)|1 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Prove that (cos^3 theta-sin^3 theta)/(cos theta-sin theta) = 1+cos theta sin theta

If x sin^3 theta+ y cos^3 theta = sin theta cos theta and x sin theta = y cos theta, Find the value of x^2 + y^2.

Solve: sin3theta+cos2theta=0

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

The number of all possible values of θ where 0 sin3θ = 2cos((3θ)/y )+ 2sin((3θ)/z) (xyz)sin3θ = (y + 2z)cos3θ + ysin3θ has a solution (x_0,y_0,z_0) with y_0 ,z_0 ≠ 0, is

Eliminate theta from the following equation : x cos theta - y sin theta = a, x sin theta + y cos theta = b

If 0 lt theta lt pi and the system of equations (sin theta) x + y + z = 0 x + (cos theta) y + z = 0 (sin theta) x + (cos theta) y + z = 0 has a non-trivial solution, then theta =

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

Find the number of solution for , sin 5 theta * cos 3 theta = sin 9 theta * cos 7 theta in [0,(pi)/2]

If cot theta = (x)/(y) , find the value of: " " ( x cos theta + y sin theta)/( y sin theta - x cos theta)