Home
Class 12
MATHS
If x and y are positive integer satisfyi...

If x and y are positive integer satisfying `tan^(-1)((1)/(x))+tan^(-1)((1)/(y))=(1)/(7)`, then the number of ordered pairs of (x,y) is

A

3

B

4

C

5

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}\left(\frac{1}{x}\right) + \tan^{-1}\left(\frac{1}{y}\right) = \frac{1}{7} \), we can use the formula for the sum of inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] provided \( ab < 1 \). ### Step 1: Apply the formula Let \( a = \frac{1}{x} \) and \( b = \frac{1}{y} \). Then we can rewrite the equation as: \[ \tan^{-1}\left(\frac{\frac{1}{x} + \frac{1}{y}}{1 - \frac{1}{xy}}\right) = \frac{1}{7} \] ### Step 2: Simplify the left-hand side The left-hand side simplifies to: \[ \tan^{-1}\left(\frac{\frac{y + x}{xy}}{1 - \frac{1}{xy}}\right) = \tan^{-1}\left(\frac{x + y}{xy - 1}\right) \] ### Step 3: Set the arguments equal Since the inverse tangent function is one-to-one, we can set the arguments equal: \[ \frac{x + y}{xy - 1} = \tan\left(\frac{1}{7}\right) \] ### Step 4: Cross-multiply Cross-multiplying gives us: \[ x + y = \tan\left(\frac{1}{7}\right)(xy - 1) \] ### Step 5: Rearranging the equation Rearranging this equation leads to: \[ xy \tan\left(\frac{1}{7}\right) - x - y = \tan\left(\frac{1}{7}\right) \] ### Step 6: Substitute \( k = \tan\left(\frac{1}{7}\right) \) Let \( k = \tan\left(\frac{1}{7}\right) \). The equation becomes: \[ xy k - x - y = k \] ### Step 7: Rearranging further Rearranging gives: \[ xy k - x - y - k = 0 \] ### Step 8: Factor the equation This can be factored as: \[ xy k - x - y + 1 - 1 - k = 0 \] ### Step 9: Solve for \( x \) in terms of \( y \) From the equation, we can express \( x \): \[ x = \frac{7y + 1}{y - 7} \] ### Step 10: Find integer solutions Now, we need to find positive integer solutions for \( y \) such that \( y - 7 \) divides \( 7y + 1 \). ### Step 11: Check possible values for \( y \) By checking integer values of \( y \) starting from 8 upwards (since \( y \) must be greater than 7): - For \( y = 8 \): \( x = \frac{57}{1} = 57 \) - For \( y = 9 \): \( x = \frac{64}{2} = 32 \) - For \( y = 10 \): \( x = \frac{71}{3} \) (not an integer) - For \( y = 11 \): \( x = \frac{78}{4} = 19.5 \) (not an integer) - For \( y = 12 \): \( x = \frac{85}{5} = 17 \) - For \( y = 13 \): \( x = \frac{92}{6} = 15.33 \) (not an integer) - For \( y = 14 \): \( x = \frac{99}{7} = 14.14 \) (not an integer) - For \( y = 15 \): \( x = \frac{106}{8} = 13.25 \) (not an integer) - For \( y = 16 \): \( x = \frac{113}{9} = 12.56 \) (not an integer) - For \( y = 17 \): \( x = \frac{120}{10} = 12 \) - For \( y = 18 \): \( x = \frac{127}{11} = 11.545 \) (not an integer) - For \( y = 19 \): \( x = \frac{134}{12} = 11.166 \) (not an integer) - For \( y = 20 \): \( x = \frac{141}{13} = 10.846 \) (not an integer) - For \( y = 21 \): \( x = \frac{148}{14} = 10.571 \) (not an integer) - For \( y = 22 \): \( x = \frac{155}{15} = 10.333 \) (not an integer) - For \( y = 23 \): \( x = \frac{162}{16} = 10.125 \) (not an integer) - For \( y = 24 \): \( x = \frac{169}{17} = 9.941 \) (not an integer) - For \( y = 25 \): \( x = \frac{176}{18} = 9.778 \) (not an integer) - For \( y = 26 \): \( x = \frac{183}{19} = 9.632 \) (not an integer) - For \( y = 27 \): \( x = \frac{190}{20} = 9.5 \) (not an integer) - For \( y = 28 \): \( x = \frac{197}{21} = 9.333 \) (not an integer) - For \( y = 29 \): \( x = \frac{204}{22} = 9.273 \) (not an integer) - For \( y = 30 \): \( x = \frac{211}{23} = 9.174 \) (not an integer) - For \( y = 31 \): \( x = \frac{218}{24} = 9.083 \) (not an integer) - For \( y = 32 \): \( x = \frac{225}{25} = 9 \) Continuing this process, we find valid pairs. ### Final Step: Count valid pairs The valid pairs found are: 1. \( (57, 8) \) 2. \( (32, 9) \) 3. \( (17, 12) \) 4. \( (12, 17) \) 5. \( (9, 32) \) 6. \( (8, 57) \) Thus, the total number of ordered pairs \( (x, y) \) is **6**.

To solve the equation \( \tan^{-1}\left(\frac{1}{x}\right) + \tan^{-1}\left(\frac{1}{y}\right) = \frac{1}{7} \), we can use the formula for the sum of inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] provided \( ab < 1 \). ...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If x and y are positive integers such that tan^(-1)x+cot^(-1)y=tan^(-1)3 , then:

Find the value of tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))

Find the value of tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))

Find the value of tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x

The number of positive solution satisfying the equation tan^(-1)((1)/(2x+1))+tan^(-1)((1)/(4x+1))=tan^(-1)(2/(x^2)) is

The number of positive integral solutions of tan^(-1)x + cot^(-1)y= tan^(-1)3 is :

If x gt y gt 0 , then find the value of tan^(-1).(x)/(y) + tan^(-1) [(x + y)/(x -y)]

If tan^(-1)x+tan^(-1)y=(pi)/(4) , then cot^(-1)x+cot^(-1)y=