Home
Class 12
MATHS
If cos^(-1)((1-x^(2))/(1+x^(2)))+sin^(-1...

If `cos^(-1)((1-x^(2))/(1+x^(2)))+sin^(-1)((2x)/(1+x^(2)))=p` for all `x in[-1,0]`, then p is equal to

A

`(-pi)/(2)`

B

0

C

`(pi)/(2)`

D

`(2pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) + \sin^{-1}\left(\frac{2x}{1 + x^2}\right) = p \] for all \( x \in [-1, 0] \), we will use the known identities of inverse trigonometric functions. ### Step-by-Step Solution: **Step 1:** Recognize the identities. We can use the following identities for inverse trigonometric functions: \[ \cos^{-1}(t) = 2 \tan^{-1}\left(\frac{1 - t}{1 + t}\right) \] and \[ \sin^{-1}(t) = 2 \tan^{-1}\left(\frac{t}{\sqrt{1 - t^2}}\right) \] However, in our case, we will directly use the known relationships for the specific forms given in the problem. **Step 2:** Simplify \(\cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right)\). Using the identity: \[ \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) = 2 \tan^{-1}(x) \] **Step 3:** Simplify \(\sin^{-1}\left(\frac{2x}{1 + x^2}\right)\). Using the identity: \[ \sin^{-1}\left(\frac{2x}{1 + x^2}\right) = 2 \tan^{-1}(x) \] **Step 4:** Combine the results. Now, substituting these results back into the original equation, we get: \[ 2 \tan^{-1}(x) + 2 \tan^{-1}(x) = 4 \tan^{-1}(x) \] **Step 5:** Set the equation equal to \(p\). Thus, we have: \[ 4 \tan^{-1}(x) = p \] **Step 6:** Evaluate \(p\) for \(x \in [-1, 0]\). Now we need to evaluate \(4 \tan^{-1}(x)\) for \(x\) in the interval \([-1, 0]\): - When \(x = -1\), \(\tan^{-1}(-1) = -\frac{\pi}{4}\), so: \[ p = 4 \left(-\frac{\pi}{4}\right) = -\pi \] - When \(x = 0\), \(\tan^{-1}(0) = 0\), so: \[ p = 4(0) = 0 \] Since \(p\) must be constant for all \(x\) in the interval, we check the values. The function \(4 \tan^{-1}(x)\) varies from \(-\pi\) to \(0\) as \(x\) goes from \(-1\) to \(0\). Thus, for all \(x \in [-1, 0]\), the value of \(p\) is: \[ \boxed{0} \]

To solve the equation \[ \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) + \sin^{-1}\left(\frac{2x}{1 + x^2}\right) = p \] for all \( x \in [-1, 0] \), we will use the known identities of inverse trigonometric functions. ...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((2x)/(1-x^(2))) , where a, x in]0,1[ , then the value of x is

If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((2x)/(1-x^(2))) , where a, x in]0,1[ , then the value of x is

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

If y=sin^(-1)((1-x^2)/(1+x^2))+cos^(-1)((1-x^2)/(1+x^2)) , find (dy)/(dx) .

If x_1=2tan^(-1)((1+x)/(1-x)),x_2=sin^(-1)((1-x^2)/(1+x^2)) , where x in (0,1), then x_1+x_2 is equal to (a) 0 (b) 2pi (c) pi (d) none of these

Evaluate lim_(xto0) (cos^(-1)((1-x^(2))/(1+x^(2))))/(sin^(-1)x).

If y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2)) and (dy)/(dx)=1/(2sqrt(x(1-x)))+p , then p is equal to 0 (b) 1/(sqrt(1-x)) sin^(-1)sqrt(x) (d) 1/(sqrt(1-x^2))

Consider a function f(x)="sin"^(-1) (2x)/(1+x^(2))+"cos"^(-1) (1-x^(2))/(1+x^(2))+"tan"^(-1) (2x)/(1-x^(2))-atan^(-1)x(aepsilonR) , the value of a if f(x)=0 for all x :

Prove that: sin{tan^(-1)((1-x^2)/(2x))+cos^(-1)((1-x^2)/(1+x^2))}=1

Prove that: sin{tan^(-1)((1-x^2)/(2x))+cos^(-1)((1-x^2)/(1+x^2))}=1