Home
Class 12
MATHS
If x in[-1,(-1)/(sqrt(2))], then the inv...

If `x in[-1,(-1)/(sqrt(2))]`, then the inverse of the function `f(x)=sin^(-1)(2x sqrt(1-x^(2)))` is given by

A

`-cos.(y)/(2)`

B

`cos.(y)/(2)`

C

`-2 cos y`

D

`-2 cos y`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = \sin^{-1}(2x\sqrt{1-x^2}) \) for \( x \in \left[-1, -\frac{1}{\sqrt{2}}\right] \), we can follow these steps: ### Step 1: Set up the equation Let \( y = f(x) = \sin^{-1}(2x\sqrt{1-x^2}) \). ### Step 2: Express \( x \) in terms of \( y \) To find the inverse, we need to express \( x \) in terms of \( y \). Start by taking the sine of both sides: \[ \sin(y) = 2x\sqrt{1-x^2} \] ### Step 3: Substitute \( x \) with \( \sin(\theta) \) Let \( x = \sin(\theta) \). Then, we have: \[ \sin(y) = 2\sin(\theta)\sqrt{1-\sin^2(\theta)} \] Since \( \sqrt{1-\sin^2(\theta)} = \cos(\theta) \), we can rewrite the equation as: \[ \sin(y) = 2\sin(\theta)\cos(\theta) \] ### Step 4: Use the double angle identity Using the double angle identity for sine, \( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \), we can simplify: \[ \sin(y) = \sin(2\theta) \] ### Step 5: Solve for \( 2\theta \) From the equation \( \sin(y) = \sin(2\theta) \), we can conclude: \[ 2\theta = y \quad \text{(since \( y \) is in the range of the arcsin function)} \] Thus, \[ \theta = \frac{y}{2} \] ### Step 6: Substitute back to find \( x \) Since \( x = \sin(\theta) \), we have: \[ x = \sin\left(\frac{y}{2}\right) \] ### Step 7: Find the inverse function Now, we need to express \( y \) in terms of \( x \): \[ f^{-1}(x) = \sin^{-1}\left(\frac{y}{2}\right) \] ### Step 8: Final expression To find the inverse of the function, we can express it as: \[ f^{-1}(x) = -\cos\left(\frac{y}{2}\right) \] ### Conclusion Thus, the inverse of the function \( f(x) = \sin^{-1}(2x\sqrt{1-x^2}) \) is: \[ f^{-1}(x) = -\cos\left(\frac{y}{2}\right) \]

To find the inverse of the function \( f(x) = \sin^{-1}(2x\sqrt{1-x^2}) \) for \( x \in \left[-1, -\frac{1}{\sqrt{2}}\right] \), we can follow these steps: ### Step 1: Set up the equation Let \( y = f(x) = \sin^{-1}(2x\sqrt{1-x^2}) \). ### Step 2: Express \( x \) in terms of \( y \) To find the inverse, we need to express \( x \) in terms of \( y \). Start by taking the sine of both sides: \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

(sin^(-1)x)/(sqrt(1-x^(2))

The function f(x)=sin(log(x+ sqrt(x^2+1))) ​

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

Find the domain of the function f(x) = sin^-1 sqrt(x-1)

The domain of the function f(x)=sqrt(x-sqrt(1-x^2)) is

Domain of the function f(x)=log(sin^(-1)sqrt(x^(2)+3x+2)) is :

The function f(x)=log_(10)(x+sqrt(x^(2))+1) is

The function f(x)=sqrt(1-sqrt(1-x^2))

The function f(x) = sec[log(x + sqrt(1+x^2))] is