Home
Class 12
MATHS
Let a is a real number satisfying a^3+1/...

Let `a` is a real number satisfying `a^3+1/(a^3)=18` . Then the value of `a^4+1/(a^4)-39` is ____.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ a^3 + \frac{1}{a^3} = 18 \] ### Step 1: Express \( a^3 + \frac{1}{a^3} \) in terms of \( a + \frac{1}{a} \) We know that: \[ a^3 + \frac{1}{a^3} = \left( a + \frac{1}{a} \right)^3 - 3 \left( a + \frac{1}{a} \right) \] Let \( t = a + \frac{1}{a} \). Then we can rewrite the equation as: \[ t^3 - 3t = 18 \] ### Step 2: Rearranging the equation Rearranging gives us: \[ t^3 - 3t - 18 = 0 \] ### Step 3: Finding the value of \( t \) We can use trial and error to find the roots of this cubic equation. Testing \( t = 3 \): \[ 3^3 - 3(3) - 18 = 27 - 9 - 18 = 0 \] Thus, \( t = 3 \) is a solution. ### Step 4: Finding \( a^2 + \frac{1}{a^2} \) Now that we have \( t = 3 \), we can find \( a^2 + \frac{1}{a^2} \) using the identity: \[ a^2 + \frac{1}{a^2} = \left( a + \frac{1}{a} \right)^2 - 2 \] Substituting \( t = 3 \): \[ a^2 + \frac{1}{a^2} = 3^2 - 2 = 9 - 2 = 7 \] ### Step 5: Finding \( a^4 + \frac{1}{a^4} \) Next, we find \( a^4 + \frac{1}{a^4} \) using the identity: \[ a^4 + \frac{1}{a^4} = \left( a^2 + \frac{1}{a^2} \right)^2 - 2 \] Substituting \( a^2 + \frac{1}{a^2} = 7 \): \[ a^4 + \frac{1}{a^4} = 7^2 - 2 = 49 - 2 = 47 \] ### Step 6: Finding the final value Now we need to find \( a^4 + \frac{1}{a^4} - 39 \): \[ a^4 + \frac{1}{a^4} - 39 = 47 - 39 = 8 \] Thus, the final answer is: \[ \boxed{8} \]

To solve the problem, we start with the equation given: \[ a^3 + \frac{1}{a^3} = 18 \] ### Step 1: Express \( a^3 + \frac{1}{a^3} \) in terms of \( a + \frac{1}{a} \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.12|11 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.13|9 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.10|5 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

If a-(1)/(a)=3 .Find the value of a^(4)+(1)/(a^(4))

Let z be a complex number satisfying |z+16|=4|z+1| . Then

Let z be a complex number satisfying the equation (z^3+3)^2=-16 , then find the value of |z|

If t is a real number satisfying the equation 2t^3-9t^2+30-a=0, then find the values of the parameter a for which the equation x+1/x=t gives six real and distinct values of x .

Let z be a non - real complex number which satisfies the equation z^(23) = 1 . Then the value of sum_(22)^(k = 1 ) (1)/(1 + z ^( 8k) + z ^( 16k ))

Let z be a complex number satisfying the equation (z^3+3)^2=-16 , then find the value of |z|dot

if alpha,beta,gamma are non-real numbers satisfying x^3-1=0, then the value of |[lambda+1,alpha,beta],[alpha,lambda+beta,1],[beta,1,lambda+1]|

Let a ,b ,a n dc be distinct nonzero real numbers such that (1-a^3)/a=(1-b^3)/b=(1-c^3)/c dot The value of (a^3+b^3+c^3) is _____________.

Let a ,b ,a n dc be distinct nonzero real numbers such that (1-a^3)/a=(1-b^3)/b=(1-c^3)/cdot The value of (a^3+b3+c^3) is _____________.

Let Z_(1) and Z_(2) be two complex numbers satisfying |Z_(1)|=9 and |Z_(2)-3-4i|=4 . Then the minimum value of |Z_(1)-Z_(2)| is