Home
Class 12
MATHS
Let p ,q be integers and let alpha,beta ...

Let `p ,q` be integers and let `alpha,beta` be the roots of the equation, `x^2-x-1=0,` where `alpha!=beta` . For `n=0,1,2, ,l e ta_n=palpha^n+qbeta^ndot` FACT : If `aa n db` are rational number and `a+bsqrt(5)=0,t h e na=0=bdot`. Then `a_(12)` is

A

`a_(11) - a_(10)`

B

`a_(11) + a_(10)`

C

`2a_(11) + a_(10)`

D

` a_(11) +2a_(10)`

Text Solution

Verified by Experts

The correct Answer is:
2

Since ` alpha, beta ` be the roots of the equation, ` x^(2) - x - 1= 0` ,
` alpha ^(2) - alpha - 1 = 0 and beta ^(2) - beta - 1 = 0` …(i)
`a_(n) + a_(n-1) = palpha ^(n) + q beta^(n) + palpha ^(n-1) + q beta ^(n-1)`
` = p alpha ^(n) + p alpha ^(n-1) + q beta^(n) + q beta^(n-1)`
` = p alpha ^(n-1) + (alpha +1)+ q beta^(n-1) + (beta+ 1)`
` = p alpha ^(n-1) . alpha ^(2) + q beta^(n-1) . beta^(2)` [Ising (i)]
` p lapha ^(n+1) + q beta ^(n+1)`
` a_(n+ 1)`
So, ` a_(12) = a_(11) + a_(10)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise JEE ADVANCED (Numerical Value Type )|1 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise JEE ADVANCED (Multiple Correct Answer Type )|1 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

Let p ,q be integers and let alpha,beta be the roots of the equation, x^2-x-1=0, where alpha!=beta . For n=0,1,2, ,l e ta_n=palpha^n+qbeta^ndot FACT : If aa n db are rational number and a+bsqrt(5)=0,t h e na=0=bdot If a_4=28 ,t h e np+2q= 7 (b) 21 (c) 14 (d) 12

Let p, q be integers and let alpha,beta be the roots of the equation x^2-2x+3=0 where alpha != beta For n= 0, 1, 2,......., Let alpha_n=palpha^n+qbeta^n value alpha_9=

Knowledge Check

  • If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

    A
    4
    B
    1
    C
    2
    D
    0
  • Similar Questions

    Explore conceptually related problems

    Let alpha, beta are the roots of the equation x^(2)+x+1=0 , then alpha^3-beta^3

    Let alpha, and beta are the roots of the equation x^(2)+x +1 =0 then

    Let alpha and beta be the roots of the equation 5x^2+6x-2=0 . If S_n=alpha^n+beta^n, n=1,2,3.... then

    If alpha,beta are the roots of the equation x^2-2x+4=0 , find alpha^(n)+beta^(n) for (a) n=3k, k in N

    If tan alpha tan beta are the roots of the equation x^2 + px +q =0(p!=0) then

    Let alpha and beta be two real roots of the equation 5cot^2x-3cotx-1=0 , then cot^2 (alpha+beta) =

    Let alpha and beta , be the roots of the equation x^2+x+1=0 . The equation whose roots are alpha^19 and beta^7 are: