Home
Class 12
MATHS
If omega=z/(z-1/3i) and abs(omega)=1, wh...

If `omega=z/(z-1/3i)` and `abs(omega)=1`, where `i=sqrt(-1)`,then lies on

Text Solution

Verified by Experts

The correct Answer is:
Perpendicular bisector of the line joininig 0+ 0i and `0 + (1//3)i`

`omega = (z)/(z-(1)/(2)i)`
or ` |omega| = |(z)/(z-(1)/(3)i)|`
or ` |z| = |omega||z-(1)/(3)i|`
or ` |z| = |z-(1)/(3)i|" "(because |omega|=1)`
Hence, locous of z is perpendicular bisector of the line joining `0 + 0i` and `0+(1//3)i`. Hence z lies on a straight line .
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.10|10 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.11|6 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.8|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If z is a complex number which simultaneously satisfies the equations 3abs(z-12)=5abs(z-8i) " and " abs(z-4) =abs(z-8) , where i=sqrt(-1) , then Im(z) can be

If omega = z//[z-(1//3)i] and |omega| = 1 , then find the locus of z.

If (z+1)/(z+i) is a purely imaginary number (where (i=sqrt(-1) ), then z lies on a

If z=i^(i^(i)) where i=sqrt-1 then |z| is equal to

If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1 , find the locus of z in the complex plane

If z is any complex number satisfying abs(z-3-2i) le 2 , where i=sqrt(-1) , then the minimum value of abs(2z-6+5i) , is

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

Prove that z=i^i, where i=sqrt-1, is purely real.

If the complex number z is to satisfy abs(z)=3, abs(z-{a(1+i)-i}) le 3 and abs(z+2a-(a+1)i) gt 3 , where i=sqrt(-1) simultaneously for atleast one z, then find all a in R .

The equation z^(2)-i|z-1|^(2)=0, where i=sqrt(-1), has.