Home
Class 12
MATHS
If the terms of the A.P. sqrt(a-x),sqrt(...

If the terms of the A.P. `sqrt(a-x),sqrt(x),sqrt(a+x)` are all in integers, `w h e r ea ,x >0,` then find the least composite value of `adot`

Text Solution

AI Generated Solution

To solve the problem, we need to find the least composite value of \( a \) such that the terms \( \sqrt{a-x}, \sqrt{x}, \sqrt{a+x} \) form an arithmetic progression (A.P.) and all terms are integers, given that \( x > 0 \). ### Step-by-Step Solution: 1. **Understanding the A.P. Condition**: For three terms \( A, B, C \) to be in A.P., the condition is: \[ 2B = A + C ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 5.15|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 5.16|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 5.13|1 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If the terms of the A.P, sqrt(a-x),sqrt(x),sqrt(a+x) are all in integers, where a>x >0, then find the least composite value of a .

If the terms of G.P. sqrt(a-x),sqrt(x),sqrt(a+x) .. are all in integers where agto then the least composite odd integral value of a is

Find: 18th term of the A.P. sqrt(2),\ 3sqrt(2),\ 5sqrt(2) ddot

For a ,x ,>0 prove tht at most one term of the G.P. sqrt(a-x),sqrt(x),sqrt(a+x) can be rational.

If f(x)=sqrt(x^2+a x+4) is defined for all x , then find the values of adot

If f(x)=sqrt(x^2+a x+4) is defined for all x , then find the values of adot

If f(x)=sqrt(x^2+a x+4) is defined for all x , then find the value of adot

Find all possible values of sqrt(|x|-2) .

If x = 13 + 2sqrt(42) , then sqrt(x) + (1)/(sqrt(x)) is equal to asqrt(b) then find the value of b - a ?

Find the value of sqrt((x+2sqrt((x-1)))]+sqrt((x-2sqrt((x-1)))] =