Home
Class 12
MATHS
For and odd integer n ge 1, n^(3) - (n -...

For and odd integer `n ge 1, n^(3) - (n - 1)^(3) ` + ……
`+ (- 1)^(n-1) 1^(3)`

Text Solution

AI Generated Solution

To solve the given series for an odd integer \( n \geq 1 \): ### Step 1: Understand the series The series is given as: \[ S = n^3 - (n - 1)^3 + (n - 2)^3 - (n - 3)^3 + \ldots + (-1)^{n-1} \cdot 1^3 \] Since \( n \) is odd, the last term will be \( 1^3 \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 5.86|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 5.87|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 5.84|1 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Statement 1: Sum of the series 1^3-2^3+3^3-4^3++11^3=378. - Statement 2: For any odd integer ngeq1,n^3-(n-1)^3++(-1)^(n-1)1^3=1/4(2n-1)(n+1)^2dot

If n is an odd integer greater than or equal to 1, then the value of n^3 - (n-1)^3 + (n-1)^3 - (n-1)^3 + .... + (-1)^(n-1) 1^3

Knowledge Check

  • The sum of the squares of the first n positive integers 1^2 + 2^2 + 3^2 + ………+ n^2 is (n(n +1)(2n+1))/(6) . What is the sum of the squares of the first 9 positive integers?

    A
    90
    B
    125
    C
    200
    D
    285
  • Similar Questions

    Explore conceptually related problems

    If n is an odd integer, then (1 + i)^(6n) + (1-i)^(6n) is equal to

    For any integer n, the argument of ((sqrt3+i)^(4n+1))/((1-isqrt3)^(4n))

    Using the principle of mathematical induction , prove that for n in N , (1)/(n+1) + (1)/(n+2) + (1)/(n+3) + "……." + (1)/(3n+1) gt 1 .

    If n ge 1 is a positive integer, then prove that 3^(n) ge 2^(n) + n . 6^((n - 1)/(2))

    For a fixed positive integer n , if =|n !(n+1)!(n+2)!(n+1)!(n+2)!(n+3)!(n+2)!(n+3)!(n+4)!| , then show that [/((n !)^3)-4] is divisible by ndot

    If n_1, n_2 are positive integers, then (1 + i)^(n_1) + ( 1 + i^3)^(n_1) + (1 + i^5)^(n_2) + (1 + i^7)^(n_2) is real if and only if :

    If n_1, n_2 are positive integers, then (1 + i)^(n_1) + ( 1 + i^3)^(n_1) + (1 + i_5)^(n_2) + (1 + i^7)^(n_2) is real if and only if :