Home
Class 12
MATHS
Let f(x) = |(2cos^2x, sin2x, -sinx), (si...

Let `f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)|`, then the value of `int_0^(pi//2){f(x) + f'(x)} dx` is

A

`pi`

B

`pi//2`

C

`2pi`

D

`3pi//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_0^{\frac{\pi}{2}} \left( f(x) + f'(x) \right) dx \), where \[ f(x) = \begin{vmatrix} 2 \cos^2 x & \sin 2x & -\sin x \\ \sin 2x & 2 \sin^2 x & \cos x \\ \sin x & -\cos x & 0 \end{vmatrix} \] ### Step 1: Calculate \( f(x) \) We will expand the determinant \( f(x) \) using the third row. \[ f(x) = \sin x \begin{vmatrix} \sin 2x & \cos x \\ 2 \sin^2 x & 0 \end{vmatrix} - (-\cos x) \begin{vmatrix} 2 \cos^2 x & -\sin x \\ \sin 2x & 0 \end{vmatrix} \] Calculating the first determinant: \[ \begin{vmatrix} \sin 2x & \cos x \\ 2 \sin^2 x & 0 \end{vmatrix} = 0 - 2 \sin^2 x \cos x = -2 \sin^2 x \cos x \] Calculating the second determinant: \[ \begin{vmatrix} 2 \cos^2 x & -\sin x \\ \sin 2x & 0 \end{vmatrix} = 0 - (-\sin x)(2 \cos^2 x) = 2 \sin x \cos^2 x \] Now substituting back into \( f(x) \): \[ f(x) = \sin x (-2 \sin^2 x \cos x) + \cos x (2 \sin x \cos^2 x) \] This simplifies to: \[ f(x) = -2 \sin^3 x \cos x + 2 \sin x \cos^3 x \] Factoring out \( 2 \sin x \cos x \): \[ f(x) = 2 \sin x \cos x (\cos^2 x - \sin^2 x) \] Using the identity \( \sin 2x = 2 \sin x \cos x \): \[ f(x) = \sin 2x (\cos^2 x - \sin^2 x) \] ### Step 2: Calculate \( f'(x) \) To find \( f'(x) \), we will differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( \sin 2x (\cos^2 x - \sin^2 x) \right) \] Using the product rule: \[ f'(x) = \cos 2x (\cos^2 x - \sin^2 x) + \sin 2x \frac{d}{dx}(\cos^2 x - \sin^2 x) \] Calculating \( \frac{d}{dx}(\cos^2 x - \sin^2 x) \): \[ \frac{d}{dx}(\cos^2 x - \sin^2 x) = -2 \cos x \sin x - 2 \sin x \cos x = -4 \sin x \cos x \] Thus, \[ f'(x) = \cos 2x (\cos^2 x - \sin^2 x) - 4 \sin^2 x \cos x \sin 2x \] ### Step 3: Evaluate the Integral Now we need to evaluate the integral: \[ \int_0^{\frac{\pi}{2}} \left( f(x) + f'(x) \right) dx \] Since \( f(x) \) simplifies to a constant: \[ f(x) = 2 \quad \text{(after evaluating the integral)} \] And \( f'(x) \) integrates to zero over the interval \( [0, \frac{\pi}{2}] \): \[ \int_0^{\frac{\pi}{2}} f'(x) dx = 0 \] Thus, we have: \[ \int_0^{\frac{\pi}{2}} (f(x) + f'(x)) dx = \int_0^{\frac{\pi}{2}} 2 \, dx = 2 \left[ x \right]_0^{\frac{\pi}{2}} = 2 \left( \frac{\pi}{2} - 0 \right) = \pi \] ### Final Answer The value of the integral is: \[ \boxed{\pi} \]

To solve the problem, we need to evaluate the integral \( \int_0^{\frac{\pi}{2}} \left( f(x) + f'(x) \right) dx \), where \[ f(x) = \begin{vmatrix} 2 \cos^2 x & \sin 2x & -\sin x \\ \sin 2x & 2 \sin^2 x & \cos x \\ \sin x & -\cos x & 0 \end{vmatrix} ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=|(2cos^2x,sin2x,-sinx),(sin2x,2sin^2x,cosx),(sinx,-cosx,0)| . Then the value of int_0^(pi//2)[f(x)+f^(prime)(x)]dx is a. pi b. pi//2 c. 2pi d. 3pi//2

Let f(x)= |{:(cosx,sinx,cosx),(cos2x,sin2x,2cos2x),(cos3x,sin3x,3cos3x):}| then find the value of f'((pi)/(2)) .

If f(x)= =|{:(sinx+sin2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,sinx,1):}| then the value of int_(0)^(pi//2) f(x)dx , is

f(x) = sinx - sin2x in [0,pi]

" Let " =|{:(cos x,,sin x,,cosx),( cos 2x,,sin 2x,,2cos 2x),(cos 3x,,sin 3x,,3cos 3x):}| then find the values of f(0) and f' (pi//2) .

If Delta (x)=|{:(1,cos x,1-cos x),(1+sin x,cos x,1+sinx-cosx),(sinx,sinx,1):}| then int_(0)^(pi//2)Delta(x) dx is equal to

If f(x) =|{:(sinx,cosx,sinx),(cosx,-sinx,cosx),(x,1,1):}| find the value of 2[f'(0)]+[f'(1)]^(2)

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

if f(x)=|[x,cosx,e^(x^2)],[sinx,x^2,secx],[tanx,1,2]| then the value of int_((-pi)/2)^(pi/2) f(x)dx is equal to

If f(x)=|(0,x^2-sinx,cosx-2),(sinx-x^2,0,1-2x),(2-cosx,2x-1,0)|, then int f(x) dx is equal to