Home
Class 12
MATHS
The function f(x)=cos^(-1)((2[|sinx|+|co...

The function `f(x)=cos^(-1)((2[|sinx|+|cosx|])/(sin^2x+2sinx+11/4))` is defined if x belongs to (where [.] represents the greatest integer function)

A

`[0,(7pi)/(6)]`

B

`[0,(pi)/(6)]`

C

`[(11pi)/(6)]`

D

`[pi,2pi]`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the domain of the function \( f(x) = \cos^{-1}\left(\frac{2[\lvert \sin x \rvert + \lvert \cos x \rvert]}{\sin^2 x + 2\sin x + \frac{11}{4}}\right) \), we need to ensure that the expression inside the inverse cosine function is valid. This means that it must lie within the range \([-1, 1]\). ### Step-by-Step Solution: **Step 1: Define the function \( g(x) \)** Let \( g(x) = \lvert \sin x \rvert + \lvert \cos x \rvert \). **Hint 1:** Consider how the absolute values affect the sine and cosine functions over different intervals. **Step 2: Find the maximum and minimum values of \( g(x) \)** The maximum value of \( g(x) \) occurs when both \( \lvert \sin x \rvert \) and \( \lvert \cos x \rvert \) are maximized. The maximum value of \( g(x) \) is \( \sqrt{2} \) (when \( x = \frac{\pi}{4} \)). The minimum value occurs when either sine or cosine is zero, giving a minimum of \( 1 \). **Hint 2:** Use the unit circle to visualize where sine and cosine reach their maximum and minimum values. **Step 3: Analyze the denominator** The denominator is \( \sin^2 x + 2\sin x + \frac{11}{4} \). We need this to be positive to avoid division by zero. **Step 4: Set the inequality** To ensure the expression is defined, we need: \[ \sin^2 x + 2\sin x + \frac{11}{4} > 0 \] **Hint 3:** Consider the discriminant of the quadratic equation to determine when it is positive. **Step 5: Rewrite the quadratic** The quadratic can be rewritten as: \[ \sin^2 x + 2\sin x + \frac{11}{4} = \left(\sin x + 1\right)^2 + \frac{7}{4} \] This expression is always positive since it is a sum of squares. **Step 6: Determine the range of \( g(x) \)** Since \( g(x) \) can take values from \( 1 \) to \( \sqrt{2} \), we can find the greatest integer function: \[ [\lvert \sin x \rvert + \lvert \cos x \rvert] = 1 \] **Hint 4:** Recall that the greatest integer function takes the largest integer less than or equal to the value. **Step 7: Set up the inequality for the inverse cosine** Now we need: \[ \frac{2 \cdot 1}{\sin^2 x + 2\sin x + \frac{11}{4}} \leq 1 \] **Step 8: Solve the inequality** This leads to: \[ 2 \leq \sin^2 x + 2\sin x + \frac{11}{4} \] Rearranging gives: \[ \sin^2 x + 2\sin x + \frac{3}{4} \geq 0 \] **Step 9: Factor the quadratic** This can be factored or analyzed using the quadratic formula. The roots can be found, and we determine the intervals where the quadratic is non-negative. **Step 10: Find the intervals** The roots of the quadratic are: \[ \sin x = -\frac{3}{2} \quad (\text{not valid}) \quad \text{and} \quad \sin x = -\frac{1}{2} \] Thus, we find that \( \sin x \geq -\frac{1}{2} \). **Step 11: Determine the corresponding \( x \) values** This gives: \[ x \in \left[0, \frac{7\pi}{6}\right] \cup \left[\frac{11\pi}{6}, 2\pi\right] \] ### Final Answer: The function \( f(x) \) is defined for: \[ x \in \left(0, \frac{7\pi}{6}\right) \cup \left(\frac{11\pi}{6}, 2\pi\right) \]

To determine the domain of the function \( f(x) = \cos^{-1}\left(\frac{2[\lvert \sin x \rvert + \lvert \cos x \rvert]}{\sin^2 x + 2\sin x + \frac{11}{4}}\right) \), we need to ensure that the expression inside the inverse cosine function is valid. This means that it must lie within the range \([-1, 1]\). ### Step-by-Step Solution: **Step 1: Define the function \( g(x) \)** Let \( g(x) = \lvert \sin x \rvert + \lvert \cos x \rvert \). **Hint 1:** Consider how the absolute values affect the sine and cosine functions over different intervals. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|7 Videos
  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|7 Videos
  • EQUATION OF PLANE AND ITS APPLICATIONS -II

    CENGAGE ENGLISH|Exercise DPP 3.4|14 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE ENGLISH|Exercise Exercises 1.18|1 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

f(x)=[sinx] where [.] denotest the greatest integer function is continuous at:

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

Find x satisfying [tan^(-1)x]+[cos^(-1)x]=2, where [] represents the greatest integer function.

Discuss continuity of f(x) =[sin x] -[cos x] at x=pi//2, where [.] represent the greatest integer function .

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

f(x)=sin[x]+[sin x],0 < x < pi/2 (where [.] represents the greatest integer function), can also be represented as

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is