Home
Class 12
MATHS
int(1//3)^(3)(1)/(x)log(e)(|(x+x^(2)-1)/...

`int_(1//3)^(3)(1)/(x)log_(e)(|(x+x^(2)-1)/(x-x^(2)+1)|)dx` is equal to

A

`(8)/(3)`

B

`-(8)/(3)`

C

0

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\frac{1}{3}}^{3} \frac{1}{x} \log\left|\frac{x + x^2 - 1}{x - x^2 + 1}\right| \, dx, \] we can use the substitution \( x = \frac{1}{t} \). This substitution will help us simplify the integral. ### Step 1: Substitute \( x = \frac{1}{t} \) When \( x = \frac{1}{t} \), we have: \[ dx = -\frac{1}{t^2} dt. \] The limits of integration will change as follows: - When \( x = \frac{1}{3} \), \( t = 3 \). - When \( x = 3 \), \( t = \frac{1}{3} \). Thus, the integral becomes: \[ I = \int_{3}^{\frac{1}{3}} \frac{1}{\frac{1}{t}} \log\left|\frac{\frac{1}{t} + \left(\frac{1}{t}\right)^2 - 1}{\frac{1}{t} - \left(\frac{1}{t}\right)^2 + 1}\right| \left(-\frac{1}{t^2}\right) dt. \] ### Step 2: Simplify the integral This simplifies to: \[ I = \int_{3}^{\frac{1}{3}} -t \log\left|\frac{\frac{1}{t} + \frac{1}{t^2} - 1}{\frac{1}{t} - \frac{1}{t^2} + 1}\right| \frac{1}{t^2} dt. \] Rearranging gives: \[ I = \int_{3}^{\frac{1}{3}} -\frac{1}{t} \log\left|\frac{1 + t - t^2}{1 - t + t^2}\right| dt. \] ### Step 3: Change the limits of integration Now, we can change the limits of integration: \[ I = \int_{\frac{1}{3}}^{3} \frac{1}{t} \log\left|\frac{1 + t - t^2}{1 - t + t^2}\right| dt. \] ### Step 4: Combine the integrals Now we have two expressions for \( I \): 1. \( I = \int_{\frac{1}{3}}^{3} \frac{1}{x} \log\left|\frac{x + x^2 - 1}{x - x^2 + 1}\right| dx \) 2. \( I = \int_{\frac{1}{3}}^{3} \frac{1}{t} \log\left|\frac{1 + t - t^2}{1 - t + t^2}\right| dt \) ### Step 5: Add the two integrals Adding these two integrals gives: \[ 2I = \int_{\frac{1}{3}}^{3} \left( \frac{1}{x} \log\left|\frac{x + x^2 - 1}{x - x^2 + 1}\right| + \frac{1}{x} \log\left|\frac{1 + x - x^2}{1 - x + x^2}\right| \right) dx. \] ### Step 6: Simplify the logarithmic expression Using the property of logarithms, we can combine the logarithmic terms: \[ 2I = \int_{\frac{1}{3}}^{3} \frac{1}{x} \log\left| \frac{\left(x + x^2 - 1\right)\left(1 + x - x^2\right)}{\left(x - x^2 + 1\right)\left(1 - x + x^2\right)} \right| dx. \] ### Step 7: Evaluate the integral Notice that the numerator and denominator are symmetric and will cancel out when evaluated over the symmetric limits. Therefore: \[ 2I = 0 \implies I = 0. \] ### Conclusion Thus, the value of the integral is \[ \boxed{0}. \]

To solve the integral \[ I = \int_{\frac{1}{3}}^{3} \frac{1}{x} \log\left|\frac{x + x^2 - 1}{x - x^2 + 1}\right| \, dx, \] we can use the substitution \( x = \frac{1}{t} \). This substitution will help us simplify the integral. ...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

int_(1//e)^(e) (dx)/(x(log x)^(1//3))

int_(-3)^(3)(x^(2))/((x^(2)+3)(1+e^(x)))dx is equal to

int(1)/(x(1+root(3)(x))^(2))dx is equal to

int(log(x+1)-logx)/(x(x+1))dx is equal to :

The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to

int_(0)^(1//2)(1)/(1-x^(2))ln.(1-x)/(1+x)dx is equal to

int(x e^x)/((1+x)^2)dx is equal to