Home
Class 12
MATHS
Points on the curve f(x)=x/(1-x^2) where...

Points on the curve `f(x)=x/(1-x^2)` where the tangent is inclined at an angle of `pi/4` to the x-axis are (a) (0,0) (b) `(sqrt(3),-(sqrt(3))/2)` (c) `(-2,2/3)` (d) `(-sqrt(3),(sqrt(3))/2)`

A

`(0,0)`

B

`(sqrt(3),-(sqrt3)/(2))`

C

`(-2,(2)/(3))`

D

`(sqrt3,-(sqrt3)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the points on the curve \( f(x) = \frac{x}{1 - x^2} \) where the tangent is inclined at an angle of \( \frac{\pi}{4} \) (or 45 degrees) to the x-axis, we can follow these steps: ### Step 1: Determine the slope of the tangent The slope of the tangent line at any point on the curve is given by the derivative \( \frac{dy}{dx} \). Since the tangent is inclined at an angle of \( \frac{\pi}{4} \), the slope is: \[ m = \tan\left(\frac{\pi}{4}\right) = 1 \] ### Step 2: Find the derivative of the function We need to find the derivative of the function \( f(x) \): \[ f(x) = \frac{x}{1 - x^2} \] Using the quotient rule, where if \( u = x \) and \( v = 1 - x^2 \), then: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Calculating \( \frac{du}{dx} = 1 \) and \( \frac{dv}{dx} = -2x \): \[ \frac{dy}{dx} = \frac{(1 - x^2)(1) - (x)(-2x)}{(1 - x^2)^2} = \frac{1 - x^2 + 2x^2}{(1 - x^2)^2} = \frac{1 + x^2}{(1 - x^2)^2} \] ### Step 3: Set the derivative equal to the slope We set the derivative equal to the slope: \[ \frac{1 + x^2}{(1 - x^2)^2} = 1 \] ### Step 4: Solve for \( x \) Cross-multiplying gives: \[ 1 + x^2 = (1 - x^2)^2 \] Expanding the right side: \[ 1 + x^2 = 1 - 2x^2 + x^4 \] Rearranging gives: \[ x^4 - 3x^2 = 0 \] Factoring out \( x^2 \): \[ x^2(x^2 - 3) = 0 \] This gives us: \[ x^2 = 0 \quad \text{or} \quad x^2 = 3 \] Thus, \( x = 0, \sqrt{3}, -\sqrt{3} \). ### Step 5: Find corresponding \( y \) values Now we substitute these \( x \) values back into the original function to find \( y \): 1. For \( x = 0 \): \[ y = f(0) = \frac{0}{1 - 0^2} = 0 \quad \Rightarrow \quad (0, 0) \] 2. For \( x = \sqrt{3} \): \[ y = f(\sqrt{3}) = \frac{\sqrt{3}}{1 - 3} = \frac{\sqrt{3}}{-2} = -\frac{\sqrt{3}}{2} \quad \Rightarrow \quad \left(\sqrt{3}, -\frac{\sqrt{3}}{2}\right) \] 3. For \( x = -\sqrt{3} \): \[ y = f(-\sqrt{3}) = \frac{-\sqrt{3}}{1 - 3} = \frac{-\sqrt{3}}{-2} = \frac{\sqrt{3}}{2} \quad \Rightarrow \quad \left(-\sqrt{3}, \frac{\sqrt{3}}{2}\right) \] ### Final Points The points on the curve where the tangent is inclined at an angle of \( \frac{\pi}{4} \) to the x-axis are: - \( (0, 0) \) - \( \left(\sqrt{3}, -\frac{\sqrt{3}}{2}\right) \) - \( \left(-\sqrt{3}, \frac{\sqrt{3}}{2}\right) \) ### Conclusion Thus, the correct options are: - (a) \( (0, 0) \) - (b) \( \left(\sqrt{3}, -\frac{\sqrt{3}}{2}\right) \) - (d) \( \left(-\sqrt{3}, \frac{\sqrt{3}}{2}\right) \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|8 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE TYPE|19 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise EXERCISES|57 Videos
  • 3D COORDINATION SYSTEM

    CENGAGE ENGLISH|Exercise DPP 3.1|11 Videos
  • APPLICATION OF INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|142 Videos

Similar Questions

Explore conceptually related problems

Points on the curve f(x)=x/(1-x^2) where the tangent is inclined at an angle of pi/4 to the x-axis are (0,0) (b) (sqrt(3),-(sqrt(3))/2) (-2,2/3) (d) (-sqrt(3),(sqrt(3))/2)

If at each point of the curve y=x^3-a x^2+x+1, the tangent is inclined at an acute angle with the positive direction of the x-axis, then (a) a >0 (b) a<-sqrt(3) (c) -sqrt(3)< a< sqrt(3) (d) non eoft h e s e

If at each point of the curve y=x^3-a x^2+x+1, the tangent is inclined at an acute angle with the positive direction of the x-axis, then (a) a >0 (b) a<-sqrt(3) (c) -sqrt(3)<=a<= sqrt(3) (d) non eoft h e s e

The abscissas of point Pa n dQ on the curve y=e^x+e^(-x) such that tangents at Pa n dQ make 60^0 with the x-axis are. )a) 1n((sqrt(3)+sqrt(7))/7)a n d1n((sqrt(3)+sqrt(5))/2) (b) 1n((sqrt(3)+sqrt(7))/2) (c) 1n((sqrt(7)-sqrt(3))/2) (d) +-1n((sqrt(3)+sqrt(7))/2)

The abscissas of point Pa n dQ on the curve y=e^x+e^(-x) such that tangents at Pa n dQ make 60^0 with the x-axis are. 1n((sqrt(3)+sqrt(7))/7)a n d1n((sqrt(3)+sqrt(5))/2) 1n((sqrt(3)+sqrt(7))/2) (c) 1n((sqrt(7)-sqrt(3))/2) +-1n((sqrt(3)+sqrt(7))/2)

If tan^(-1)x+2cot^(-1)x=(2pi)/3, then x , is equal to (a) (sqrt(3)-1)/(sqrt(3)+1) (b) 3 (c) sqrt(3) (d) sqrt(2)

The point(s) on the curve y^3+\ 3x^2=12 y where the tangent is vertical, is(are) ? (a) (+-4/(sqrt(3)),\ -2) (b) (+-\ sqrt((11)/3,\ )\ 1) (c) (0,\ 0) (d) (+-4/(sqrt(3)),\ 2)

The values of parameter a for which the point of minimum of the function f(x)=1+a^2x-x^3 satisfies the inequality (x^2+x+2)/(x^2+5x+6)<0a r e (a) (2sqrt(3),3sqrt(3)) (b) -3sqrt(3),-2sqrt(3)) (c) (-2sqrt(3),3sqrt(3)) (d) (-2sqrt(2),2sqrt(3))

Domain of f(x)=sin^(-1)[2-4x^2], where [.] denotes the greatest integer function, is: (a)[-(sqrt(3))/2,(sqrt(3))/2]-{0} (b) [-(sqrt(3))/2,(sqrt(3))/2] (c)[-(sqrt(3))/2,(sqrt(3))/2)-{0} (d) (-(sqrt(3))/2,(sqrt(3))/2)-0

Find common tangent of the two curve y^(2)=4x and x^(2)+y^(2)-6x=0 (a) y=(x)/(3)+3 (b) y=((x)/(sqrt(3))-sqrt(3)) (c) y=(x)/(3)-3 (d) y=((x)/(sqrt(3))+sqrt(3))