Home
Class 12
MATHS
The function f(x) ={{:( 5x-4, " for " ...

The function `f(x) ={{:( 5x-4, " for " 0 lt x le 1) ,( 4x^(2) - 3x, " for" 1 lt x lt 2 ),( 3x + 4 , "for" x ge2):}is `

A

continuous at x-1 and x=2

B

continuous at x=1 but not derivable at x=2

C

continuous at x=1 and 2 but not derivable at x=1

D

continuous at x=1 and 2 but not derivable derivable at x=1 and x=2

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity and differentiability of the piecewise function \[ f(x) = \begin{cases} 5x - 4 & \text{for } 0 < x \leq 1 \\ 4x^2 - 3x & \text{for } 1 < x < 2 \\ 3x + 4 & \text{for } x \geq 2 \end{cases} \] we need to check the points \(x = 1\) and \(x = 2\). ### Step 1: Check Continuity at \(x = 1\) 1. **Calculate \(f(1)\)**: \[ f(1) = 5(1) - 4 = 1 \] 2. **Calculate \(\lim_{x \to 1^-} f(x)\)**: For \(x < 1\), we use \(f(x) = 5x - 4\): \[ \lim_{x \to 1^-} f(x) = 5(1) - 4 = 1 \] 3. **Calculate \(\lim_{x \to 1^+} f(x)\)**: For \(x > 1\), we use \(f(x) = 4x^2 - 3x\): \[ \lim_{x \to 1^+} f(x) = 4(1)^2 - 3(1) = 4 - 3 = 1 \] 4. **Check continuity**: Since \(f(1) = \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = 1\), \(f(x)\) is continuous at \(x = 1\). ### Step 2: Check Differentiability at \(x = 1\) 1. **Calculate \(f'(x)\) for \(0 < x < 1\)**: \[ f'(x) = \frac{d}{dx}(5x - 4) = 5 \] 2. **Calculate \(f'(x)\) for \(1 < x < 2\)**: \[ f'(x) = \frac{d}{dx}(4x^2 - 3x) = 8x - 3 \] Evaluating at \(x = 1\): \[ f'(1) = 8(1) - 3 = 5 \] 3. **Check differentiability**: Since \(f'(1^-) = 5\) and \(f'(1^+) = 5\), \(f(x)\) is differentiable at \(x = 1\). ### Step 3: Check Continuity at \(x = 2\) 1. **Calculate \(f(2)\)**: \[ f(2) = 3(2) + 4 = 6 + 4 = 10 \] 2. **Calculate \(\lim_{x \to 2^-} f(x)\)**: For \(x < 2\), we use \(f(x) = 4x^2 - 3x\): \[ \lim_{x \to 2^-} f(x) = 4(2)^2 - 3(2) = 16 - 6 = 10 \] 3. **Calculate \(\lim_{x \to 2^+} f(x)\)**: For \(x > 2\), we use \(f(x) = 3x + 4\): \[ \lim_{x \to 2^+} f(x) = 3(2) + 4 = 6 + 4 = 10 \] 4. **Check continuity**: Since \(f(2) = \lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = 10\), \(f(x)\) is continuous at \(x = 2\). ### Step 4: Check Differentiability at \(x = 2\) 1. **Calculate \(f'(x)\) for \(1 < x < 2\)**: \[ f'(x) = 8x - 3 \] Evaluating at \(x = 2\): \[ f'(2) = 8(2) - 3 = 16 - 3 = 13 \] 2. **Calculate \(f'(x)\) for \(x \geq 2\)**: \[ f'(x) = 3 \] 3. **Check differentiability**: Since \(f'(2^-) = 13\) and \(f'(2^+) = 3\), \(f(x)\) is not differentiable at \(x = 2\). ### Conclusion - The function \(f(x)\) is continuous at \(x = 1\) and \(x = 2\). - The function \(f(x)\) is differentiable at \(x = 1\) but not differentiable at \(x = 2\).
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The function f(x)= {(5x-4 ", " 0 lt x le 1 ),( 4x^3-3x", " 1 lt x lt 2):}

If f(x)= {{:(,x-5 "for "x le 1),(,4x^(2)-9"for "1 lt x lt 2"then "f'(2+)),(,3x+4"for "xge2):}

3(1 - x ) lt 2 (x + 4)

Find the inverse of each of the following functions : f(x) = {{:(x"," -oo lt x lt 1),(x^(2)"," 1 le x le 4),(2x"," 4 lt x lt oo):}

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

Graph the function f(x)={(3-x^(2), "if " x lt 1),(x^(3)-4x,"if "x ge 1):}

Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if 1 lt x le 2):} at x = 1

Discuss continuity of f(x)= {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if 1 lt x le 2):} at x = 1

The points of discontinuity of the function f (x) = {{:(3x + 1"," ,0 le x lt2),(4x - 1"," ,2 lt x le 6),(5x + 2",", 6 lt x le 10 ):} are:

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then