Home
Class 11
PHYSICS
Let veca=2veci+3vecj+4veck and vecb=3vec...

Let `veca=2veci+3vecj+4veck and vecb=3veci+4vecj+5veck`. Find the angle between them.

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \(\vec{a}\) and \(\vec{b}\), we can use the formula for the dot product of two vectors, which relates the dot product to the magnitudes of the vectors and the cosine of the angle between them. The formula is given by: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] Where: - \(\vec{a} \cdot \vec{b}\) is the dot product of vectors \(\vec{a}\) and \(\vec{b}\). - \(|\vec{a}|\) and \(|\vec{b}|\) are the magnitudes of vectors \(\vec{a}\) and \(\vec{b}\). - \(\theta\) is the angle between the two vectors. ### Step 1: Calculate the dot product \(\vec{a} \cdot \vec{b}\) Given: \[ \vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k} \] \[ \vec{b} = 3\hat{i} + 4\hat{j} + 5\hat{k} \] The dot product is calculated as follows: \[ \vec{a} \cdot \vec{b} = (2)(3) + (3)(4) + (4)(5) \] \[ = 6 + 12 + 20 = 38 \] ### Step 2: Calculate the magnitudes \(|\vec{a}|\) and \(|\vec{b}|\) The magnitude of vector \(\vec{a}\) is given by: \[ |\vec{a}| = \sqrt{(2^2) + (3^2) + (4^2)} = \sqrt{4 + 9 + 16} = \sqrt{29} \] The magnitude of vector \(\vec{b}\) is given by: \[ |\vec{b}| = \sqrt{(3^2) + (4^2) + (5^2)} = \sqrt{9 + 16 + 25} = \sqrt{50} \] ### Step 3: Substitute the values into the dot product formula Now, we substitute the values we found into the dot product formula: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] \[ 38 = \sqrt{29} \cdot \sqrt{50} \cdot \cos \theta \] ### Step 4: Solve for \(\cos \theta\) First, calculate \(\sqrt{29} \cdot \sqrt{50}\): \[ \sqrt{29} \cdot \sqrt{50} = \sqrt{1450} \] Now, we can express \(\cos \theta\): \[ \cos \theta = \frac{38}{\sqrt{1450}} \] ### Step 5: Calculate \(\theta\) Finally, we can find the angle \(\theta\) by taking the inverse cosine: \[ \theta = \cos^{-1}\left(\frac{38}{\sqrt{1450}}\right) \] ### Summary of the Solution Steps: 1. Calculate the dot product \(\vec{a} \cdot \vec{b} = 38\). 2. Calculate the magnitudes \(|\vec{a}| = \sqrt{29}\) and \(|\vec{b}| = \sqrt{50}\). 3. Substitute into the dot product formula and solve for \(\cos \theta\). 4. Calculate \(\theta = \cos^{-1}\left(\frac{38}{\sqrt{1450}}\right)\).

To find the angle between the vectors \(\vec{a}\) and \(\vec{b}\), we can use the formula for the dot product of two vectors, which relates the dot product to the magnitudes of the vectors and the cosine of the angle between them. The formula is given by: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] Where: - \(\vec{a} \cdot \vec{b}\) is the dot product of vectors \(\vec{a}\) and \(\vec{b}\). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PHYSICS AND MATHEMATICS

    HC VERMA ENGLISH|Exercise Question for short Answer|14 Videos
  • PHYSICS AND MATHEMATICS

    HC VERMA ENGLISH|Exercise Objective 2|5 Videos
  • NEWTON'S LAWS OF MOTION

    HC VERMA ENGLISH|Exercise Questions for short Answer|17 Videos
  • REST AND MOTION : KINEMATICS

    HC VERMA ENGLISH|Exercise Question for short Answer|13 Videos

Similar Questions

Explore conceptually related problems

If veca=2veci+3vecj+4veck and vecb =4veci+3vecj+2veck , find the angle between veca and vecb .

If vecA=2veci+3vecj+4veck and vecB=4veci+3vecj+2veck, find vecAxxvecB .

If veca = 2veci+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)

If veca = 2vecj+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)

Let veca=4veci+3vecj and vecb=3veci+4vecj . a.Find the magnitudes of a. veca, b. vecb, c. veca+vecb and d. veca-vecb.

If a vector vecr of magnitude 3sqrt6 is directed along the bisector of the angle between the vectors veca =7veci-4vecj -4veck and vecb = -2veci- vecj+ 2veck , then vecr is equal to

Statement 1 : veca = 3 veci + p vecj +3veck and vecb = 2veci + 3vecj + qveck are parallel vectors if p = 9//2 and q =2 . Statement 2 : If veca= a_1 veci + a_2 vecj + a_3 veck and vecb = b_1 veci + b_2 vecj + b_3veck are parallel, then (a_1)/(b_1) = (a_2)/(b_2)= (a_3)/(b_3) .

Let points P,Q, and R hasve positon vectors vecr_1=3veci-2vecj-veck, vecr_2=veci+3vecj+4verck and vecr_3=2veci+vecj-2veck relative to an origin O. Find the distance of P from the plane OQR.

Let vecb=-veci+4vecj+6veck, vecc=2veci-7vecj-10veck. If veca be a unit vector and the scalar triple product [veca vecb vecc] has the greatest value then veca is A. (1)/(sqrt(3))(hati+hatj+hatk) B. (1)/(sqrt(5))(sqrt(2)hati-hatj-sqrt(2)hatk) C. (1)/(3)(2hati+2hatj-hatk) D. (1)/(sqrt(59))(3hati-7hatj-hatk)

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .