The increasing order (lowest first) for the values of `e//m` (charge/mass) for electron `(e)`, proton `(p)`, neutron `(n)`, and alpha particle `(alpha)` is
A
(a) `e`,`p`,`n`,`alpha`
B
(b) `n`,`p`,`e`,`alpha`
C
(c) `n`,`p`,`alpha`,`e`
D
(d) `n`,`alpha`,`p`,`e`
Text Solution
AI Generated Solution
The correct Answer is:
To determine the increasing order of the values of \( \frac{e}{m} \) (charge/mass) for an electron, proton, neutron, and alpha particle, we will analyze the charge and mass of each particle.
### Step-by-Step Solution:
1. **Identify the Charge and Mass of Each Particle:**
- **Electron (e):**
- Charge (\( q_e \)) = \(-1.6 \times 10^{-19} \) C
- Mass (\( m_e \)) = \( 9.11 \times 10^{-31} \) kg
- **Proton (p):**
- Charge (\( q_p \)) = \( +1.6 \times 10^{-19} \) C
- Mass (\( m_p \)) = \( 1.67 \times 10^{-27} \) kg
- **Neutron (n):**
- Charge (\( q_n \)) = \( 0 \) C
- Mass (\( m_n \)) = \( 1.67 \times 10^{-27} \) kg
- **Alpha Particle (α):**
- Charge (\( q_\alpha \)) = \( +3.2 \times 10^{-19} \) C (since it has 2 protons)
- Mass (\( m_\alpha \)) = \( 4 \times m_p \) (approximately \( 4 \times 1.67 \times 10^{-27} \) kg)
2. **Calculate \( \frac{q}{m} \) for Each Particle:**
- **Neutron:**
\[
\frac{q_n}{m_n} = \frac{0}{1.67 \times 10^{-27}} = 0
\]
- **Proton:**
\[
\frac{q_p}{m_p} = \frac{1.6 \times 10^{-19}}{1.67 \times 10^{-27}} \approx 9.58 \times 10^{7} \, \text{C/kg}
\]
- **Electron:**
\[
\frac{q_e}{m_e} = \frac{-1.6 \times 10^{-19}}{9.11 \times 10^{-31}} \approx -1.76 \times 10^{11} \, \text{C/kg}
\]
- **Alpha Particle:**
\[
\frac{q_\alpha}{m_\alpha} = \frac{3.2 \times 10^{-19}}{4 \times 1.67 \times 10^{-27}} \approx 4.80 \times 10^{7} \, \text{C/kg}
\]
3. **Compare the Values:**
- Neutron: \( 0 \)
- Alpha Particle: \( \approx 4.80 \times 10^{7} \, \text{C/kg} \)
- Proton: \( \approx 9.58 \times 10^{7} \, \text{C/kg} \)
- Electron: \( \approx -1.76 \times 10^{11} \, \text{C/kg} \)
4. **Determine the Increasing Order:**
- The increasing order of \( \frac{e}{m} \) is:
- Neutron (0)
- Alpha Particle (\( \approx 4.80 \times 10^{7} \))
- Proton (\( \approx 9.58 \times 10^{7} \))
- Electron (\( \approx -1.76 \times 10^{11} \))
Thus, the final increasing order of \( \frac{e}{m} \) is:
**Neutron < Alpha Particle < Proton < Electron**
NARENDRA AWASTHI ENGLISH|Exercise Match the column|1 Videos
Similar Questions
Explore conceptually related problems
The magnitude of the de-Broglie wavelength (lambda) of an electron (e) ,proton (p) ,neutron (n) and alpha particle (a) all having the same energy of Mev , in the increasing order will follow the sequence:
Mention the charge, mass and e/m ratio for an electron.
The ratio of specific charge of a proton and an alpha-particle is :
The ratio of specific charge of a proton and an alpha -particle is
The ratio of the e//m (specific charge) values of an electron and an alpha-"particle" is
The ration of spectific charge ( e//m) of a proton to that of an alpha-particle is :
For which subatomic particle the ratio of charge and mass would be greater. (A) Proton, (B) Alpha particle, (C) Neutron, (D) Electron
The charge to mass ratio of alpha- particles is approximately to the charge to mass ratio of protons:
The increasing order of wavelength for He^(+) ion, neutron (n) and electron (e^-) particles, moving with the same velocity is
Which of the following particles can't be accelerated in a cyclotron? (1) Proton p^(+) (2) Antiproton p^(-) (3) Alpha particle alpha^(++) (4) Positron e^(+)