Home
Class 11
CHEMISTRY
The increasing order (lowest first) for ...

The increasing order (lowest first) for the values of `e//m` (charge/mass) for electron `(e)`, proton `(p)`, neutron `(n)`, and alpha particle `(alpha)` is

A

(a) `e`,`p`,`n`,`alpha`

B

(b) `n`,`p`,`e`,`alpha`

C

(c) `n`,`p`,`alpha`,`e`

D

(d) `n`,`alpha`,`p`,`e`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the increasing order of the values of \( \frac{e}{m} \) (charge/mass) for an electron, proton, neutron, and alpha particle, we will analyze the charge and mass of each particle. ### Step-by-Step Solution: 1. **Identify the Charge and Mass of Each Particle:** - **Electron (e):** - Charge (\( q_e \)) = \(-1.6 \times 10^{-19} \) C - Mass (\( m_e \)) = \( 9.11 \times 10^{-31} \) kg - **Proton (p):** - Charge (\( q_p \)) = \( +1.6 \times 10^{-19} \) C - Mass (\( m_p \)) = \( 1.67 \times 10^{-27} \) kg - **Neutron (n):** - Charge (\( q_n \)) = \( 0 \) C - Mass (\( m_n \)) = \( 1.67 \times 10^{-27} \) kg - **Alpha Particle (α):** - Charge (\( q_\alpha \)) = \( +3.2 \times 10^{-19} \) C (since it has 2 protons) - Mass (\( m_\alpha \)) = \( 4 \times m_p \) (approximately \( 4 \times 1.67 \times 10^{-27} \) kg) 2. **Calculate \( \frac{q}{m} \) for Each Particle:** - **Neutron:** \[ \frac{q_n}{m_n} = \frac{0}{1.67 \times 10^{-27}} = 0 \] - **Proton:** \[ \frac{q_p}{m_p} = \frac{1.6 \times 10^{-19}}{1.67 \times 10^{-27}} \approx 9.58 \times 10^{7} \, \text{C/kg} \] - **Electron:** \[ \frac{q_e}{m_e} = \frac{-1.6 \times 10^{-19}}{9.11 \times 10^{-31}} \approx -1.76 \times 10^{11} \, \text{C/kg} \] - **Alpha Particle:** \[ \frac{q_\alpha}{m_\alpha} = \frac{3.2 \times 10^{-19}}{4 \times 1.67 \times 10^{-27}} \approx 4.80 \times 10^{7} \, \text{C/kg} \] 3. **Compare the Values:** - Neutron: \( 0 \) - Alpha Particle: \( \approx 4.80 \times 10^{7} \, \text{C/kg} \) - Proton: \( \approx 9.58 \times 10^{7} \, \text{C/kg} \) - Electron: \( \approx -1.76 \times 10^{11} \, \text{C/kg} \) 4. **Determine the Increasing Order:** - The increasing order of \( \frac{e}{m} \) is: - Neutron (0) - Alpha Particle (\( \approx 4.80 \times 10^{7} \)) - Proton (\( \approx 9.58 \times 10^{7} \)) - Electron (\( \approx -1.76 \times 10^{11} \)) Thus, the final increasing order of \( \frac{e}{m} \) is: **Neutron < Alpha Particle < Proton < Electron**
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ATOMIC STUCTURE

    NARENDRA AWASTHI ENGLISH|Exercise level 2|30 Videos
  • ATOMIC STUCTURE

    NARENDRA AWASTHI ENGLISH|Exercise Level 3 (Passage 1)|3 Videos
  • CHEMICAL EQUILIBRIUM

    NARENDRA AWASTHI ENGLISH|Exercise Match the column|1 Videos

Similar Questions

Explore conceptually related problems

The magnitude of the de-Broglie wavelength (lambda) of an electron (e) ,proton (p) ,neutron (n) and alpha particle (a) all having the same energy of Mev , in the increasing order will follow the sequence:

Mention the charge, mass and e/m ratio for an electron.

Knowledge Check

  • The ratio of specific charge of a proton and an alpha -particle is

    A
    `2:1`
    B
    `1:2`
    C
    `1:4`
    D
    `1:1`
  • Similar Questions

    Explore conceptually related problems

    The ratio of specific charge of a proton and an alpha-particle is :

    The ratio of the e//m (specific charge) values of an electron and an alpha-"particle" is

    The ration of spectific charge ( e//m) of a proton to that of an alpha-particle is :

    For which subatomic particle the ratio of charge and mass would be greater. (A) Proton, (B) Alpha particle, (C) Neutron, (D) Electron

    The charge to mass ratio of alpha- particles is approximately to the charge to mass ratio of protons:

    The increasing order of wavelength for He^(+) ion, neutron (n) and electron (e^-) particles, moving with the same velocity is

    Which of the following particles can't be accelerated in a cyclotron? (1) Proton p^(+) (2) Antiproton p^(-) (3) Alpha particle alpha^(++) (4) Positron e^(+)