The following equilibrium constants were determined at `1120 K :`
`2CO(g)hArrC(s)+CO_(2)(g), , K_(p1)=10^(-14)atm^(-1)`
`CO(g)+Cl_(2)(g)hArrCOCl_(2)(g), , K_(p2)=6xx10^(-3)atm^(-1)`
What is the equilibrium constant `K_(c)` for the foollowing reaction at `1120 K:`
`C(s)+CO_(2)(g)+2Cl_(2)(g)hArr2COCl_(2)(g)`
The following equilibrium constants were determined at `1120 K :`
`2CO(g)hArrC(s)+CO_(2)(g), , K_(p1)=10^(-14)atm^(-1)`
`CO(g)+Cl_(2)(g)hArrCOCl_(2)(g), , K_(p2)=6xx10^(-3)atm^(-1)`
What is the equilibrium constant `K_(c)` for the foollowing reaction at `1120 K:`
`C(s)+CO_(2)(g)+2Cl_(2)(g)hArr2COCl_(2)(g)`
`2CO(g)hArrC(s)+CO_(2)(g), , K_(p1)=10^(-14)atm^(-1)`
`CO(g)+Cl_(2)(g)hArrCOCl_(2)(g), , K_(p2)=6xx10^(-3)atm^(-1)`
What is the equilibrium constant `K_(c)` for the foollowing reaction at `1120 K:`
`C(s)+CO_(2)(g)+2Cl_(2)(g)hArr2COCl_(2)(g)`
A
`3.31xx10^(11)M^(-1)`
B
`5.5xx10^(10)M^(-1)`
C
`5.51xx10^(6)M^(-1)`
D
None of these
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to find the equilibrium constant \( K_c \) for the reaction:
\[ C(s) + CO_2(g) + 2Cl_2(g) \rightleftharpoons 2COCl_2(g) \]
Given the following equilibrium constants at \( 1120 \, K \):
1. \( 2CO(g) \rightleftharpoons C(s) + CO_2(g) \), \( K_{p1} = 10^{-14} \, atm^{-1} \)
2. \( CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g) \), \( K_{p2} = 6 \times 10^{-3} \, atm^{-1} \)
### Step 1: Reverse the first reaction
The first reaction needs to be reversed to match the desired equation. When we reverse a reaction, the equilibrium constant is inverted.
\[
C(s) + CO_2(g) \rightleftharpoons 2CO(g) \quad K_{p1}' = \frac{1}{K_{p1}} = \frac{1}{10^{-14}} = 10^{14} \, atm
\]
### Step 2: Multiply the second reaction by 2
Next, we multiply the second reaction by 2 to match the stoichiometry of the desired equation.
\[
2CO(g) + 2Cl_2(g) \rightleftharpoons 2COCl_2(g) \quad K_{p2}' = (K_{p2})^2 = (6 \times 10^{-3})^2 = 36 \times 10^{-6} \, atm^{-2}
\]
### Step 3: Add the two modified reactions
Now we add the modified reactions together:
1. \( C(s) + CO_2(g) \rightleftharpoons 2CO(g) \) \( (K_{p1}' = 10^{14}) \)
2. \( 2CO(g) + 2Cl_2(g) \rightleftharpoons 2COCl_2(g) \) \( (K_{p2}' = 36 \times 10^{-6}) \)
When we add these reactions, the \( 2CO(g) \) cancels out:
\[
C(s) + CO_2(g) + 2Cl_2(g) \rightleftharpoons 2COCl_2(g)
\]
### Step 4: Calculate the overall \( K_p \)
The overall equilibrium constant \( K_p \) for the final reaction is the product of the individual equilibrium constants:
\[
K_p = K_{p1}' \times K_{p2}' = 10^{14} \times 36 \times 10^{-6} = 36 \times 10^{8} \, atm
\]
### Step 5: Convert \( K_p \) to \( K_c \)
To find \( K_c \), we use the relationship between \( K_p \) and \( K_c \):
\[
K_p = K_c (RT)^{\Delta n}
\]
Where:
- \( R = 0.0821 \, L \cdot atm/(K \cdot mol) \)
- \( T = 1120 \, K \)
- \( \Delta n = \text{moles of gaseous products} - \text{moles of gaseous reactants} = 2 - (1 + 2) = -1 \)
Thus, we have:
\[
K_c = \frac{K_p}{(RT)^{\Delta n}} = K_p \cdot (RT)^{1}
\]
Calculating \( RT \):
\[
RT = 0.0821 \, L \cdot atm/(K \cdot mol) \times 1120 \, K = 92.352 \, L \cdot atm/mol
\]
Now substituting:
\[
K_c = 36 \times 10^{8} \cdot 92.352
\]
Calculating \( K_c \):
\[
K_c \approx 3.32 \times 10^{10} \, L/mol
\]
### Final Answer
The equilibrium constant \( K_c \) for the reaction at \( 1120 \, K \) is approximately:
\[
K_c \approx 3.32 \times 10^{10} \, L/mol
\]
---
Topper's Solved these Questions
CHEMICAL EQUILIBRIUM
NARENDRA AWASTHI ENGLISH|Exercise Assertion- Reason Type Question|15 VideosCHEMICAL EQUILIBRIUM
NARENDRA AWASTHI ENGLISH|Exercise Subjective Problems|12 VideosCHEMICAL EQUILIBRIUM
NARENDRA AWASTHI ENGLISH|Exercise Match the column|1 VideosATOMIC STUCTURE
NARENDRA AWASTHI ENGLISH|Exercise Subjective problems|1 VideosDILUTE SOLUTION
NARENDRA AWASTHI ENGLISH|Exercise leval-03|23 Videos
Similar Questions
Explore conceptually related problems
The equilibrium constant K_(c) for the reaction, 2NaHCO_(3)(s)hArrNa_(2)CO_(3)(s)+CO_(2)(g)+H_(2)O(g)
The equilibrium constant of the following reactions at 400 K are given: 2H_(2)O(g) hArr 2H_(2)(g)+O_(2)(g), K_(1)=3.0xx10^(-13) 2CO_(2)(g) hArr 2CO(g)+O_(2)(g), K_(2)=2xx10^(-12) Then, the equilibrium constant K for the reaction H_(2)(g)+CO_(2)(g) hArr CO(g)+H_(2)O(g) is
The equilibrium constant K_(p) for the reaction H_(2)(g)+I_(2)(g) hArr 2HI(g) changes if:
Unit of equilibrium constant K_p for the reaction PCl_5(g) hArr PCl_3(g)+ Cl_2(g) is
The equilibrium constant (K_(c)) for the reaction 2HCl(g)hArrH_(2)(g)+Cl_(2)(g) is 4xx10^(-34) at 25^(@)C .what is the equilibrium constant K_p for the reaction ?
The equilibrium constant (K_(c)) for the reaction 2HCl(g)hArrH_(2)(g)+Cl_(2)(g) is 4xx10^(-34) at 25^(@)C .what is the equilibrium constant for the reaction ? (1)/(2)H_(2)(g)+(1)/(2)Cl_(2)(g)hArrHCl(g)
At a certain temperature , the following reactions have the equilibrium constants as shown below: S(s)+O_(2)(g)hArrSO_(2)(g),K_(c)=5xx10^(52) 2S(s)+3O_(2)(g)hArr2SO_(3)(g),K_(c)=10^(29) what is the equilibrium constant K_(c) for the reaction at tahea same temperature? 2SO_(2)(g)+O_(2)(g)hArr2SO_(3)(g)
(K_(p))/(K_(c)) for following reaction will be CO_((g))+(1)/(2)O_(2(g))rarrCO_(2(g))
Equilibrium constant for the following reactions have been determined at 823K . CaO(s)+H_(2)(g)hArrCO(s)+H_(2)O(g) K_(1)=60 CaO(s)+CO(g)hArrCO(S)+CO_(2)(g) K_(2)=400 Using this information, calculate, equilibrium constant (at the same temperature) for :- CO_(2)(g)+H_(2)(g)hArrCO(s)+H_(2)O(g)K_(3)=? CO(g)+H_(2)O(g)hArrCO_(2)(g)+H_(2)(g)K_(4)=?
Given equilibrium constants for the following reaction at 1200^(@)C C(g)+CO_(2)(g)hArr 2CO(g), K_(p_(1))=1.47xx10^(3) CO(g)+1//2Cl_(2)(g)hArr COCl(g), K_(P_(2))=2xx10^(6) Calculate K_(P) for the reaction : C(g)+CO_(2)+Cl_(2)(g)hArr 2COCl(g)