To solve the problem, we need to find the equilibrium constant \( K_c \) for the reaction:
\[ C(s) + CO_2(g) + 2Cl_2(g) \rightleftharpoons 2COCl_2(g) \]
Given the following equilibrium constants at \( 1120 \, K \):
1. \( 2CO(g) \rightleftharpoons C(s) + CO_2(g) \), \( K_{p1} = 10^{-14} \, atm^{-1} \)
2. \( CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g) \), \( K_{p2} = 6 \times 10^{-3} \, atm^{-1} \)
### Step 1: Reverse the first reaction
The first reaction needs to be reversed to match the desired equation. When we reverse a reaction, the equilibrium constant is inverted.
\[
C(s) + CO_2(g) \rightleftharpoons 2CO(g) \quad K_{p1}' = \frac{1}{K_{p1}} = \frac{1}{10^{-14}} = 10^{14} \, atm
\]
### Step 2: Multiply the second reaction by 2
Next, we multiply the second reaction by 2 to match the stoichiometry of the desired equation.
\[
2CO(g) + 2Cl_2(g) \rightleftharpoons 2COCl_2(g) \quad K_{p2}' = (K_{p2})^2 = (6 \times 10^{-3})^2 = 36 \times 10^{-6} \, atm^{-2}
\]
### Step 3: Add the two modified reactions
Now we add the modified reactions together:
1. \( C(s) + CO_2(g) \rightleftharpoons 2CO(g) \) \( (K_{p1}' = 10^{14}) \)
2. \( 2CO(g) + 2Cl_2(g) \rightleftharpoons 2COCl_2(g) \) \( (K_{p2}' = 36 \times 10^{-6}) \)
When we add these reactions, the \( 2CO(g) \) cancels out:
\[
C(s) + CO_2(g) + 2Cl_2(g) \rightleftharpoons 2COCl_2(g)
\]
### Step 4: Calculate the overall \( K_p \)
The overall equilibrium constant \( K_p \) for the final reaction is the product of the individual equilibrium constants:
\[
K_p = K_{p1}' \times K_{p2}' = 10^{14} \times 36 \times 10^{-6} = 36 \times 10^{8} \, atm
\]
### Step 5: Convert \( K_p \) to \( K_c \)
To find \( K_c \), we use the relationship between \( K_p \) and \( K_c \):
\[
K_p = K_c (RT)^{\Delta n}
\]
Where:
- \( R = 0.0821 \, L \cdot atm/(K \cdot mol) \)
- \( T = 1120 \, K \)
- \( \Delta n = \text{moles of gaseous products} - \text{moles of gaseous reactants} = 2 - (1 + 2) = -1 \)
Thus, we have:
\[
K_c = \frac{K_p}{(RT)^{\Delta n}} = K_p \cdot (RT)^{1}
\]
Calculating \( RT \):
\[
RT = 0.0821 \, L \cdot atm/(K \cdot mol) \times 1120 \, K = 92.352 \, L \cdot atm/mol
\]
Now substituting:
\[
K_c = 36 \times 10^{8} \cdot 92.352
\]
Calculating \( K_c \):
\[
K_c \approx 3.32 \times 10^{10} \, L/mol
\]
### Final Answer
The equilibrium constant \( K_c \) for the reaction at \( 1120 \, K \) is approximately:
\[
K_c \approx 3.32 \times 10^{10} \, L/mol
\]
---