Home
Class 11
CHEMISTRY
Molar conductivity of aqueous solution o...

Molar conductivity of aqueous solution of `HA` is `200Scm^(2)mol^(-1),pH` of this solution is `4`
Calculate the value of `pK_(a)(HA)` at `25^(@)C`.
Given `^^_(M)^(oo)(NaA)=100scm^(2)mol^(-1),`
`^^_(M)^(oo)(HCl)=425Scm^(2)mol^(-1),`
`^^_(M)^(oo)(NaCl)=125 Scm^(2)mol^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Calculate the limiting molar conductivity of HA We can calculate the limiting molar conductivity of HA using the formula: \[ \Lambda_m^{\infty}(HA) = \Lambda_m^{\infty}(HCl) + \Lambda_m^{\infty}(NaA) - \Lambda_m^{\infty}(NaCl) \] Substituting the given values: \[ \Lambda_m^{\infty}(HA) = 425 \, \text{S cm}^2 \text{mol}^{-1} + 100 \, \text{S cm}^2 \text{mol}^{-1} - 125 \, \text{S cm}^2 \text{mol}^{-1} \] Calculating this gives: \[ \Lambda_m^{\infty}(HA) = 425 + 100 - 125 = 400 \, \text{S cm}^2 \text{mol}^{-1} \] ### Step 2: Calculate the degree of dissociation (α) The degree of dissociation (α) can be calculated using the formula: \[ \alpha = \frac{\Lambda_m}{\Lambda_m^{\infty}(HA)} \] Where: - \(\Lambda_m\) is the molar conductivity of the solution (given as 200 S cm² mol⁻¹). - \(\Lambda_m^{\infty}(HA)\) is the limiting molar conductivity we just calculated (400 S cm² mol⁻¹). Substituting the values: \[ \alpha = \frac{200 \, \text{S cm}^2 \text{mol}^{-1}}{400 \, \text{S cm}^2 \text{mol}^{-1}} = 0.5 \] ### Step 3: Calculate the concentration of H⁺ ions from pH Given that the pH of the solution is 4, we can find the concentration of H⁺ ions using: \[ \text{pH} = -\log[H^+] \] Thus, \[ [H^+] = 10^{-4} \, \text{mol L}^{-1} \] ### Step 4: Write the expression for the dissociation constant (Kₐ) The dissociation of HA can be represented as: \[ HA \rightleftharpoons H^+ + A^- \] The dissociation constant \(K_a\) can be expressed as: \[ K_a = \frac{[H^+][A^-]}{[HA]} \] At equilibrium, we have: - \([H^+] = C \alpha\) - \([A^-] = C \alpha\) - \([HA] = C(1 - \alpha)\) Substituting these into the expression for \(K_a\): \[ K_a = \frac{(C \alpha)(C \alpha)}{C(1 - \alpha)} = \frac{C^2 \alpha^2}{C(1 - \alpha)} = \frac{C \alpha^2}{1 - \alpha} \] ### Step 5: Substitute the known values into the \(K_a\) expression We know: - \([H^+] = 10^{-4} \, \text{mol L}^{-1}\) which is equal to \(C \alpha\). - \(\alpha = 0.5\). Thus, \[ C \alpha = 10^{-4} \implies C = \frac{10^{-4}}{0.5} = 2 \times 10^{-4} \, \text{mol L}^{-1} \] Now substituting \(C\) and \(\alpha\) into the \(K_a\) expression: \[ K_a = \frac{(2 \times 10^{-4})(0.5)^2}{1 - 0.5} = \frac{(2 \times 10^{-4})(0.25)}{0.5} = \frac{5 \times 10^{-5}}{0.5} = 10^{-4} \] ### Step 6: Calculate pKₐ Finally, we calculate \(pK_a\): \[ pK_a = -\log K_a = -\log(10^{-4}) = 4 \] ### Conclusion The value of \(pK_a\) for HA at 25°C is **4**.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ELECTROCHEMISTRY

    NARENDRA AWASTHI ENGLISH|Exercise Assertion Reason type question|15 Videos
  • DILUTE SOLUTION

    NARENDRA AWASTHI ENGLISH|Exercise leval-03|23 Videos
  • GASEOUS STATE

    NARENDRA AWASTHI ENGLISH|Exercise Subjective problems|15 Videos

Similar Questions

Explore conceptually related problems

pH of 0.01 M aq. solution of HA is 4. Find the value of pK_(a) of HA at 25^(@)C.

The molar conductivity of 0.25 mol L^(-1) methanoic acid is 46.1 S cm^(2) mol^(-1) . Calculate the degree of dissociation constant. Given : lambda_((H^(o+)))^(@)=349.6S cm^(2)mol^(-1) and lambda_(HCOO^(-))^(@)=54.6Scm^(2)mol^(-1)

Molar conductance of 1M solution of weak acid HA is 20 ohm^(-1) cm^(2) mol^(-1) . Find % dissocation of HA: (^^_(m)^(o)(H^(+)) =350 S cm^(2) mol^(-1)),(^^_(m)^(o)(A^(-)) =50 S cm^(2) mol^(-1))

Calculate degree of dissociation of 0.02 M acetic acid at 298 K given that mho_(m)(CH_(3)COOH)=17.37 cm^(2) mol^(-1),lambda_(m)^(@)(H+)=345.8 S cm^(2) mol^(-1), lambda_(m)^(@)(CH_(3)COO^(-))=40.2 Scm^(2) mol^(-1)

Molar conductivity of a solution of an electrolyte AB_3 is 150 Scm^2mol^(-1) . If it ionises as AB_(3)toA^(3+)+3B^(-) , its equivalent conductivity will be :

The molar conductivity of a 1.5 M solution of an electrolyte is found to be 138.9 S cm^(2) mol^(-1) . Calculate the conductivity of this solution.

The molar conductivity of a 1.5 M solution of an electrolyte is found to be 138.9 S cm^(2) mol^(-1) . Calculate the conductivity of this solution.

Conductivity of an aqueous solution of 0.1M HX (a weak mono-protic acid) is 5 xx 10^(-4) Sm^(-1) Given: ^^_(m)^(oo) [H^(+)] = 0.04 Sm^(2) mol^(-1): ^^_(m)^(oo) [X^(-)] = 0.01 Sm^(2)mol^(-1) Find pK_(a)[HX]

What is the value of pK_(b)(CH_(3)COO^(c-)) if wedge^(@)._(m)=390 S cm^(-1) mol ^(-1) and wedge_(m)=7.8 S cm^(2) mol^(-1) for 0.04 M of CH_(3)COOH at 25^(@)C ?

Calculate the value of equivalent conductivity of MgCl_(2) at infinite dilution if lambda^(oo)(Mg^(2+))= 106.12 "ohm"^(-1)cm^(-2)"mol"^(-1), lambda^(oo)(Cl^(-))=76.34"ohm"^(-1)cm^(2)"mol"^(-1) .