If `sin^(-1)(x/5)+cose c^(-1)(5/4)=pi/2`
then the value of x is:
(1) 1 (2)
3 (3) 4
(4) 5
Text Solution
AI Generated Solution
To solve the equation \( \sin^{-1}\left(\frac{x}{5}\right) + \csc^{-1}\left(\frac{5}{4}\right) = \frac{\pi}{2} \), we can follow these steps:
### Step 1: Rewrite the Equation
We start with the equation:
\[
\sin^{-1}\left(\frac{x}{5}\right) + \csc^{-1}\left(\frac{5}{4}\right) = \frac{\pi}{2}
\]
...
Topper's Solved these Questions
INTEGRALS
JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|8 Videos
JEE MAIN
JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
Similar Questions
Explore conceptually related problems
If sin^(-1)(x/5) + cosec^(-1) (5/4) = pi/2 , then the value of x is
If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)sin 14)=pi/2, t h e n the value of sin^(-1)sin2x is (a) 6-2pi (b) 2pi-6 (c) pi-3 (d) 3-pi
If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)s in 14)=pi/2, t h e n the value of sin^(-1)2x is 6-2pi (b) 2pi-6 pi-3 (d) 3-pi
If x=(7+5sqrt(2))^(1/3) -1/((7+5sqrt(2))^(1/3) , then the value of x^3+3x-14 is equal to 1 (b) 0 (c) 2 (d) 4
If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to
The value of cot(cose c^(-1)(5/3)+ tan^(-1)(2/3)) is: (1) 6/(17) (2) 3/(17) (2) 4/(17) (4) 5/(17)
The value of tan^(-1)(1)+cos^(-1)(-1/2)+sin^(-1)(-1/2) is equal to pi/4 b. (5pi)/(12) c. (3pi)/4 d. (13pi)/(12)
Prove that sin^-1[3/5]+sin^-1[4/5]=pi/2
If [(2,3),(5,7)] [(1,-3),(-2,4)]=[(-4,6),(-9,x)], write the value of x
If sin^4x/2+cos^4x/3=1/5 then
JEE MAINS PREVIOUS YEAR ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-All Questions