Home
Class 12
MATHS
The largest interval lying in (-pi/2,pi/...

The largest interval lying in `(-pi/2,pi/2)` for which the function `[f(x)=4^-x^2+cos^(-1)(x/2-1)+log(cosx)]` is defined, is (1) `[0,pi]` (2) `(-pi/2,pi/2)` (3) `[-pi/4,pi/2)` (4) `[0,pi/2)`

Text Solution

Verified by Experts

`F(x)=4^(-x^2)+cos^-1(x/2-1)+log(cosx)`
`-1<=x/2-1<=1`
`0<=x/2<=2`
`0<=x<=4........(1)`
`log (cosx) when cosx>0`
`cos>0`
`x=(0,pi/2).....(2)`
final`x=(0,pi/2)`
...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROBABILITY

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|11 Videos
  • SEQUENCES AND SERIES

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|10 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in (-pi/2,pi/4) (b) (0,pi/2) (-pi/2,pi/2) (d) (pi/4,pi/2)

The function f(x)""=""t a n^(-1)(sinx""+""cosx) is an increasing function in (1) (pi/4,pi/2) (2) (-pi/2,pi/4) (3) (0,pi/2) (4) (-pi/2,pi/2)

Range of tan^(-1)((2x)/(1+x^2)) is (a) [-pi/4,pi/4] (b) (-pi/2,pi/2) (c) (-pi/2,pi/4) (d) [pi/4,pi/2]

If f(x)=cos^(-1)((2x^2+1)/(x^2+1)), then rang of f(x) is [0,pi] (2) (0,pi/4] (0,pi/3] (4) [0,pi/2)

Show that the function f(x)=cot^(-1)(sinx+cosx) is decreasing on (0,\ pi//4) and increasing on (pi//4,\ pi//2) .

Range of function f(x)=cot^(-1)(2x-x^2), is (a) [pi/4,(3pi)/2] (b) [0,pi/4] [0,pi/2] (d) [pi/4,pi]

The length of the largest continuous interval in which the function f(x)=4x-tan2x is monotonic is (a) pi/2 (b) pi/4 (c) pi/8 (d) pi/(16)

For 0 cos^(-1)(sintheta) is true when theta belongs to (a) (pi/4,pi) (b) (pi,(3pi)/2) (c) (pi/4,(3pi)/4) (d) ((3pi)/4,2pi)

The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a) [0,pi/2] (b) (0,pi/6) (c) [pi/6,pi/2] (d) none of these

The domain of the function f(x) = log_(3/2) log_(1/2)log_pi log_(pi/4) x is