Two stars of masses `3 xx 10^(31)` kg each, and at distance `2 xx 10^(11)` m rotate in a plane about their common centre of mass O. A meteorite passes through O moving perpendicular to the star's rotation plane. In order to escape from the gravitational field of this double star, the minimum speed that meteorite should have at O is (Take Graviational constant `G = 6.67 xx 10^(-11) Nm^(2) kg^(-2)`)
A
`24 xx 10^(4) m//s`
B
`1.4 xx 10^(5) m//s`
C
`3.8 xx 10^(4) m//s`
D
`2.8 xx 10^(5) m//s`
Text Solution
AI Generated Solution
Topper's Solved these Questions
JEE MAINS
JEE MAINS PREVIOUS YEAR ENGLISH|Exercise Chemistry|1 Videos
JEE MAIN
JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|452 Videos
JEE MAINS 2020
JEE MAINS PREVIOUS YEAR ENGLISH|Exercise PHYSICS|250 Videos
Similar Questions
Explore conceptually related problems
Find the gravitational potential due to a body o fmass 10kg at a distance (i) 10m and (ii) 20 m from the body. Gravitational constant G = 6.67 xx 10^(-11) Nm^(2) kg^(-1) .
Calculate the gravitational force of attraction between two bodies of masses 40 kg and 80 kg separated by a distance 15 m. Take G= 6.7 xx 10^(-11) N m^2 kg^(-2)
The centre of two identical spheres are 1.0 m apart . If the gravitational force between the spheres be 1.0 N , then what is the mass of each sphere ? (G = 6.67 xx 10^(-11) m^(3) kg^(-1) s^(-2)) .
If the acceleration due to gravity on earth is 9.81 m//s^(2) and the radius of the earth is 6370 km find the mass of the earth ? (G = 6.67 xx 10^(-11) Nm^(2)//kg^(2))
If the value of universal gravitational constant is 6.67xx10^(-11) Nm^2 kg^(-2), then find its value in CGS system.
Two stars of masses m_(1) and m_(2) distance r apart, revolve about their centre of mass. The period of revolution is :
Two stars of masses m_(1) and m_(2) distance r apart, revolve about their centre of mass. The period of revolution is :
Calculate the mass of sum if the mean radius of the earth's orbit is 1.5xx10^(8)km and G=6.67xx10^(-11)Nxxm^(2)//kg^(2)
In a binary star system one star has thrice the mass of other. The stars rotate about their common centre of mass then :
Find the mass of the earth from the following data. The period of lunar orbit around the earth is 27.3 days and radius of the orbit 3.9 xx 10^(5) km. G = 6.67 xx 10^(-11) Nm^(-2) kg^(-2) .
JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAINS-Chemistry