Home
Class 12
MATHS
Compute in integral int(-sqrt(3))^(sqrt...

Compute in integral `int_(-sqrt(3))^(sqrt(2)) sqrt(4 - x^(2)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To compute the integral \[ \int_{-\sqrt{3}}^{\sqrt{2}} \sqrt{4 - x^2} \, dx, \] we will use the formula for the integral of the form \(\int \sqrt{a^2 - x^2} \, dx\), which is given by: \[ \int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) + C, \] where \(a = 2\) in our case. ### Step 1: Identify \(a\) and set up the integral In our integral, we have \(a^2 = 4\) so \(a = 2\). We can rewrite the integral as: \[ \int_{-\sqrt{3}}^{\sqrt{2}} \sqrt{4 - x^2} \, dx. \] ### Step 2: Apply the integral formula Using the formula, we compute: \[ \int \sqrt{4 - x^2} \, dx = \frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1}\left(\frac{x}{2}\right) + C = \frac{x}{2} \sqrt{4 - x^2} + 2 \sin^{-1}\left(\frac{x}{2}\right) + C. \] ### Step 3: Evaluate the definite integral Now we will evaluate the definite integral from \(-\sqrt{3}\) to \(\sqrt{2}\): \[ \left[ \frac{x}{2} \sqrt{4 - x^2} + 2 \sin^{-1}\left(\frac{x}{2}\right) \right]_{-\sqrt{3}}^{\sqrt{2}}. \] ### Step 4: Calculate at the upper limit \(x = \sqrt{2}\) First, we calculate at \(x = \sqrt{2}\): 1. Compute \(\sqrt{4 - (\sqrt{2})^2} = \sqrt{4 - 2} = \sqrt{2}\). 2. Compute \(\sin^{-1}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}\). Now substituting: \[ \frac{\sqrt{2}}{2} \cdot \sqrt{2} + 2 \cdot \frac{\pi}{4} = 1 + \frac{\pi}{2}. \] ### Step 5: Calculate at the lower limit \(x = -\sqrt{3}\) Next, we calculate at \(x = -\sqrt{3}\): 1. Compute \(\sqrt{4 - (-\sqrt{3})^2} = \sqrt{4 - 3} = 1\). 2. Compute \(\sin^{-1}\left(\frac{-\sqrt{3}}{2}\right) = -\frac{\pi}{3}\). Now substituting: \[ \frac{-\sqrt{3}}{2} \cdot 1 + 2 \cdot \left(-\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2} - \frac{2\pi}{3}. \] ### Step 6: Combine the results Now we combine the results from the upper and lower limits: \[ \left(1 + \frac{\pi}{2}\right) - \left(-\frac{\sqrt{3}}{2} - \frac{2\pi}{3}\right). \] This simplifies to: \[ 1 + \frac{\pi}{2} + \frac{\sqrt{3}}{2} + \frac{2\pi}{3}. \] ### Step 7: Simplify the expression To combine the \(\pi\) terms, we can find a common denominator: \[ \frac{3\pi}{6} + \frac{4\pi}{6} = \frac{7\pi}{6}. \] Thus, the final result is: \[ 1 + \frac{\sqrt{3}}{2} + \frac{7\pi}{6}. \] ### Final Answer The value of the integral is: \[ 1 + \frac{\sqrt{3}}{2} + \frac{7\pi}{6}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6. 5 (Simplification of Integrals Based on the Properties of Symmetry of Integrands)|14 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 6 (Integration by Parts. Reduction Formulas)|22 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6.3 (Estimating an Integral. The Definite Integral as a Function of Its Limits)|17 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos