Home
Class 12
MATHS
Compute the integrals I = int(0)^(p...

Compute the integrals
`I = int_(0)^(pi//4) (sin x + cos x)/( 3 + sin 2 x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To compute the integral \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{3 + \sin 2x} \, dx, \] we can follow these steps: ### Step 1: Simplify the Integral First, we can rewrite \(\sin 2x\) using the double angle identity: \[ \sin 2x = 2 \sin x \cos x. \] Thus, the integral becomes: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{3 + 2 \sin x \cos x} \, dx. \] ### Step 2: Substitution Let \(t = \sin x + \cos x\). Then, we differentiate \(t\) to find \(dt\): \[ dt = \cos x \, dx - \sin x \, dx = (\cos x - \sin x) \, dx. \] This means: \[ dx = \frac{dt}{\cos x - \sin x}. \] ### Step 3: Change the Limits Now we need to change the limits of integration. When \(x = 0\): \[ t = \sin(0) + \cos(0) = 1. \] When \(x = \frac{\pi}{4}\): \[ t = \sin\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \sqrt{2}. \] So the new limits are from \(1\) to \(\sqrt{2}\). ### Step 4: Substitute in the Integral Now we substitute \(t\) into the integral: \[ I = \int_{1}^{\sqrt{2}} \frac{t}{3 + 2(\frac{t^2 - 1}{2})} \cdot \frac{dt}{\cos x - \sin x}. \] We can express \(\cos x - \sin x\) in terms of \(t\): \[ \cos x - \sin x = \sqrt{2} \cos\left(x + \frac{\pi}{4}\right). \] However, for simplicity, we will keep the integral in terms of \(t\). ### Step 5: Simplify the Denominator The denominator simplifies as follows: \[ 3 + 2 \sin x \cos x = 3 + (t^2 - 1) = t^2 + 2. \] Thus, the integral becomes: \[ I = \int_{1}^{\sqrt{2}} \frac{t}{t^2 + 2} \, dt. \] ### Step 6: Integration Now we can integrate: \[ I = \int \frac{t}{t^2 + 2} \, dt. \] Using the substitution \(u = t^2 + 2\), we have \(du = 2t \, dt\) or \(dt = \frac{du}{2t}\). Thus: \[ I = \frac{1}{2} \int \frac{1}{u} \, du = \frac{1}{2} \ln |u| + C = \frac{1}{2} \ln |t^2 + 2| + C. \] ### Step 7: Evaluate the Integral Now we evaluate from \(1\) to \(\sqrt{2}\): \[ I = \frac{1}{2} \left[ \ln(\sqrt{2}^2 + 2) - \ln(1^2 + 2) \right] = \frac{1}{2} \left[ \ln(2 + 2) - \ln(1 + 2) \right] = \frac{1}{2} \left[ \ln(4) - \ln(3) \right]. \] This simplifies to: \[ I = \frac{1}{2} \ln\left(\frac{4}{3}\right). \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{1}{2} \ln\left(\frac{4}{3}\right). \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6. 5 (Simplification of Integrals Based on the Properties of Symmetry of Integrands)|14 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 6 (Integration by Parts. Reduction Formulas)|22 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6.3 (Estimating an Integral. The Definite Integral as a Function of Its Limits)|17 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

Compute the integrals I = int_(pi//4)^(pi//3) (dx)/( 1 - sin x)

Compute the integral int_(0)^(pi^(2)/4) sin sqrt(x) dx

Knowledge Check

  • int_(0)^(pi//4)(sin x + cos x)/(3 + sin 2x) dx is equal to

    A
    `-1/4 log 3`
    B
    `1/4 log 3`
    C
    `- 1/3 log 4`
    D
    none of these
  • int_(0)^(pi//4) (sin x +cos x)/(3+sin2x)dx is equal to

    A
    `-(1)/(4)log3`
    B
    `(1)/(4)log3`
    C
    `-(1)/(3)log4`
    D
    none of these
  • int_(0)^(pi) dx/(3+2sin x + cos x) =

    A
    `(-pi)/2`
    B
    `pi/2`
    C
    `(-pi)/4`
    D
    `pi/4`
  • Similar Questions

    Explore conceptually related problems

    int_(0)^((pi)/(4))((sin x+cos x)/(3+sin2x))dx

    Compute the integrals : (a) int_(0)^(pi//2) (cos x dx)/( 6 - 5 sin x + sin^(2) x) (b) int _(0)^(pi//2) (dx)/( 2 + cos x)

    The value of the integral int_0^(pi//4) (sin x + cos x)/(9 + 16 sin 2x) dx is

    int_(0)^(pi//2) (x sin x cos x)/(sin^(4) x + cos^(4)x) dx =

    int_(0)^(pi//2) (sin x cos x) / ((1 + 2 sin x ) ( 1+ sin x))dx =