Home
Class 12
MATHS
Compute the limit underset(n rarr oo)("l...

Compute the limit `underset(n rarr oo)("lim") ((1)/(sqrt(4n^(2)-1)) + (1)/(sqrt(4n^(2)-2^(2))) +……+ (1)/(sqrt(4n^(2)-n^(2))))`

Text Solution

Verified by Experts

The correct Answer is:
`(pi)/(6)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPLICATIONS OF THE DEFINITE INTEGRAL

    IA MARON|Exercise Finding Average Values of a Function|15 Videos
  • APPLICATIONS OF THE DEFINITE INTEGRAL

    IA MARON|Exercise Computing Areas in Rectangular Coordinates|25 Videos
  • APPLICATIONS OF THE DEFINITE INTEGRAL

    IA MARON|Exercise Computing Static Moments and Moments of Inertia. Determining Coordinates of the Centre of Gravity|15 Videos
  • APPLICATION OF DIFFERENTIAL CALCULUS TO INVESTIGATION OF FUNCTIONS

    IA MARON|Exercise ADDITIONAL PROBLEMS|9 Videos
  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.8 INTEGRATION OF OTHER TRANSCENDENTAL FUNCTIONS|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(n rarr oo)((1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-2^(2)))+...+(1)/(sqrt(3n^(2))))

Find underset( n rarr oo) ("lim") (sqrt( n^(2) + 1)+ sqrt( n ) )/( sqrt( n ^(2) + 1)- sqrt( n ) )

Knowledge Check

  • lim_(n rarr oo) [(1)/(sqrt""(n^(2)-1)) + (1)/(sqrt""(n^(2) + 2^(2)))+ ….+ (1)/([n^(2)- (n-1)^(2)])] = ….

    A
    0
    B
    `(pi)/(2)`
    C
    `pi`
    D
    none
  • The value of lim_(n rarr oo)(1/sqrt(4n^(2)-1)+1/sqrt(4n^(2)-4)+...+1/sqrt(4n^(2)-n^(2))) is -

    A
    `1/4`
    B
    `pi/12`
    C
    `pi/4`
    D
    `pi/6`
  • Similar Questions

    Explore conceptually related problems

    lim_(n rarr oo)(1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)+1))+(1)/(sqrt(n^(2) +2))+...(.1)/(sqrt(n^(2)+2n))=

    lim_(n rarr oo)[(1)/(sqrt(2n-1^(2)))+(1)/(sqrt(4n-2^(2)))+(1)/(sqrt(6n-) 3^(2)))+...+(1)/(n)]

    lim_(nrarroo)((1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+....+(1)/(sqrt(n^(2)-(n-1)^(2)))) is equal to

    lim_(n rarr oo)(1)/(n^(3))(sqrt(n^(2)+1)+2sqrt(n^(2)+2^(2))+(-n)/(n sqrt((n^(2)+n^(2))))=

    Find lim_(n rarr oo)S_(n); if S_(n)=(1)/(2n)+(1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-4))+......+(1)/(sqrt(3n^(2)+2n-1))

    lim_(n rarr oo)(sin(1)/(sqrt((n))))((1)/(sqrt(n+1)))^(+(1)/(sqrt(n+2))+(1)/(sqrt(n+2)))