Home
Class 12
MATHS
The value of int0^(pi/2)sin2x.log tanxdx...

The value of `int_0^(pi/2)sin2x.log tanxdx `is

A

0

B

`pi`

C

`pi/2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{2}} \sin(2x) \log(\tan x) \, dx \), we can use the property of definite integrals. Here are the steps: ### Step 1: Set up the integral Let \[ I = \int_0^{\frac{\pi}{2}} \sin(2x) \log(\tan x) \, dx \] ### Step 2: Use the property of definite integrals We can use the property: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] In our case, \( a = \frac{\pi}{2} \). Therefore, we can rewrite the integral as: \[ I = \int_0^{\frac{\pi}{2}} \sin(2\left(\frac{\pi}{2} - x\right)) \log(\tan\left(\frac{\pi}{2} - x\right)) \, dx \] ### Step 3: Simplify the integral Using the identities: - \( \sin(2(\frac{\pi}{2} - x)) = \sin(\pi - 2x) = \sin(2x) \) - \( \tan\left(\frac{\pi}{2} - x\right) = \cot x \) Thus, we have: \[ I = \int_0^{\frac{\pi}{2}} \sin(2x) \log(\cot x) \, dx \] ### Step 4: Rewrite \( \log(\cot x) \) We know that: \[ \log(\cot x) = \log\left(\frac{1}{\tan x}\right) = -\log(\tan x) \] So we can rewrite the integral as: \[ I = \int_0^{\frac{\pi}{2}} \sin(2x) (-\log(\tan x)) \, dx = -\int_0^{\frac{\pi}{2}} \sin(2x) \log(\tan x) \, dx \] ### Step 5: Combine the integrals Now we have: \[ I = -I \] Adding \( I \) to both sides gives: \[ 2I = 0 \] Thus, we find: \[ I = 0 \] ### Final Answer The value of the integral is: \[ \int_0^{\frac{\pi}{2}} \sin(2x) \log(\tan x) \, dx = 0 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Properties and Application of definite Integrals

    A DAS GUPTA|Exercise EXERCISE|62 Videos
  • Progression, Related Inequalities and Series

    A DAS GUPTA|Exercise Exercise|235 Videos
  • Recap of Facts and Formulae

    A DAS GUPTA|Exercise Exercise|9 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/2) sin x dx

int_0^(pi/2) sin x sin 2x dx

Knowledge Check

  • The value of int_(0)^(pi//2) |sin x-cos x|dx is

    A
    0
    B
    `2 (sqrt2-1)`
    C
    `2 sqrt2`
    D
    `2(sqrt2+1)`
  • What is the value of int_0^(pi//2) sin 2x ln (cot x) dx

    A
    A. 0
    B
    B. `pi ln 2`
    C
    C. `-pi ln2`
    D
    D. `(pi ln 2)/`
  • The value of int_(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx , is

    A
    0
    B
    `pi`
    C
    `(5pi)/(2)`
    D
    `(3pi)/(2)`
  • Similar Questions

    Explore conceptually related problems

    int_(0)^((pi)/(2))sin2x*log(tan x)dx=

    Prove that int_0^(pi//2) sin 2x log tanx dx=0

    The value of int_(0)^(2 pi)|cos x-sin x|dx is

    The value of int_(0)^(pi//2) (2log sin x-log sin 2x)dx , is

    The value of int_(0)^(2pi) |cos x -sin x|dx is