Home
Class 12
MATHS
The value of int0^(pi/2)sin2x.log tanxdx...

The value of `int_0^(pi/2)sin2x.log tanxdx `is

A

0

B

`pi`

C

`pi/2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{2}} \sin(2x) \log(\tan x) \, dx \), we can use the property of definite integrals. Here are the steps: ### Step 1: Set up the integral Let \[ I = \int_0^{\frac{\pi}{2}} \sin(2x) \log(\tan x) \, dx \] ### Step 2: Use the property of definite integrals We can use the property: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] In our case, \( a = \frac{\pi}{2} \). Therefore, we can rewrite the integral as: \[ I = \int_0^{\frac{\pi}{2}} \sin(2\left(\frac{\pi}{2} - x\right)) \log(\tan\left(\frac{\pi}{2} - x\right)) \, dx \] ### Step 3: Simplify the integral Using the identities: - \( \sin(2(\frac{\pi}{2} - x)) = \sin(\pi - 2x) = \sin(2x) \) - \( \tan\left(\frac{\pi}{2} - x\right) = \cot x \) Thus, we have: \[ I = \int_0^{\frac{\pi}{2}} \sin(2x) \log(\cot x) \, dx \] ### Step 4: Rewrite \( \log(\cot x) \) We know that: \[ \log(\cot x) = \log\left(\frac{1}{\tan x}\right) = -\log(\tan x) \] So we can rewrite the integral as: \[ I = \int_0^{\frac{\pi}{2}} \sin(2x) (-\log(\tan x)) \, dx = -\int_0^{\frac{\pi}{2}} \sin(2x) \log(\tan x) \, dx \] ### Step 5: Combine the integrals Now we have: \[ I = -I \] Adding \( I \) to both sides gives: \[ 2I = 0 \] Thus, we find: \[ I = 0 \] ### Final Answer The value of the integral is: \[ \int_0^{\frac{\pi}{2}} \sin(2x) \log(\tan x) \, dx = 0 \]
Promotional Banner

Topper's Solved these Questions

  • Properties and Application of definite Integrals

    A DAS GUPTA|Exercise EXERCISE|62 Videos
  • Progression, Related Inequalities and Series

    A DAS GUPTA|Exercise Exercise|235 Videos
  • Recap of Facts and Formulae

    A DAS GUPTA|Exercise Exercise|9 Videos

Similar Questions

Explore conceptually related problems

What is the value of int_0^(pi//2) sin 2x ln (cot x) dx

The value of int_(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx , is

int_0^(pi/2) sin x dx

int_0^(pi/2) sin x sin 2x dx

int_(0)^((pi)/(2))sin2x*log(tan x)dx=

The value of int_(0)^(pi//2) (2log sin x-log sin 2x)dx , is

The value of int_(0)^(2pi) |cos x -sin x|dx is

Prove that int_0^(pi//2) sin 2x log tanx dx=0

The value of int_(0)^(2 pi)|cos x-sin x|dx is

A DAS GUPTA-Properties and Application of definite Integrals-EXERCISE
  1. State whether the statements are true or false.If y=int0^xf(t)dt .Then...

    Text Solution

    |

  2. State whether the statements are true or false.int0^(pi/2)dx/(sqrt(sin...

    Text Solution

    |

  3. If int0^a{f(x)+f(-x)}dx=int-a^aphi(x)dxthen phi(x)=.

    Text Solution

    |

  4. Evaluate: int0^pi (cos x)/(1+sinx)^2 dx

    Text Solution

    |

  5. The value int(-pi/4)^(pi/4)x^2sin^-1xdx=.

    Text Solution

    |

  6. If int0^pi x f(sinx) dx=A int0^(pi/2) f(sinx)dx, then A is (A) pi/2 (B...

    Text Solution

    |

  7. The value of int0^(pi/2)sin2x.log tanxdx is

    Text Solution

    |

  8. If int0^1e^t/(t+1) dt=a, then int(b-1)^b e^(-t)/(t-b-1) dt=

    Text Solution

    |

  9. Evaluateint(-pi/2)^(pi/2)(sin2x)/(1+cos^3x)dx

    Text Solution

    |

  10. If f is a continuous function on the interval [a,b] and there exists ...

    Text Solution

    |

  11. If l(n)=int(1)^(e)(log x)^(n) d x, "then" l(n)+nl(n-1) equal to

    Text Solution

    |

  12. If f(x)=|x-21|+|x-1|then evaluate int-2^2f(x)dx.

    Text Solution

    |

  13. If f(x)=f(4-x), g(x)+g(4-x)=3 and int(0)^(4)f(x)dx=2, then : int(0)^(4...

    Text Solution

    |

  14. It is known that f(x) is an odd function and has a period p. Prove tha...

    Text Solution

    |

  15. The value of int(0)^(2)x^([x^(2)+1])(dx), where [x] is the greatest in...

    Text Solution

    |

  16. Let f(x)=[b^(2)+(a-1)b+2]x-int(sin^(2)x+cos^(4)x)dx be an increasing f...

    Text Solution

    |

  17. For x >0,l e tf(x)=int1^x(logt)/(1+t)dtdot Find the function f(x)+f(1/...

    Text Solution

    |

  18. If overset(1)underset(0)int(sint)/(1+t)dt=alpha, them the value of the...

    Text Solution

    |

  19. Evaluate: int0^(pi/2) sin^2x/(sinx+cosx)dx

    Text Solution

    |

  20. The point of extremum of f(x)=int0^x(t-2)^2(t-1)dt is a

    Text Solution

    |