Home
Class 11
CHEMISTRY
300 पर एक अभिक्रिया के लिए साम्य स्थिरां...

300 पर एक अभिक्रिया के लिए साम्य स्थिरांक 10 है| `DeltaG^(ө)` का मान क्या होगा ?
`R=8.314 JK^(-1) "mol"^(-1)`

A

`-5.74kJ`

B

`-574kJ`

C

`+11.48kJ`

D

`+5.74kJ`

Text Solution

AI Generated Solution

The correct Answer is:
To find the standard Gibbs free energy change (ΔG°) for the reaction at 300 K with an equilibrium constant (K) of 10, we can use the following equation: \[ \Delta G° = -2.303 \cdot R \cdot T \cdot \log K \] ### Step-by-Step Solution: 1. **Identify the given values:** - Temperature (T) = 300 K - Equilibrium constant (K) = 10 - Gas constant (R) = 8.314 J K⁻¹ mol⁻¹ 2. **Convert the equilibrium constant to logarithmic form:** - We need to calculate \(\log K\): \[ K = 10 \implies \log K = \log 10 = 1 \] 3. **Substitute the values into the equation:** \[ \Delta G° = -2.303 \cdot (8.314 \, \text{J K}^{-1} \text{mol}^{-1}) \cdot (300 \, \text{K}) \cdot \log(10) \] \[ \Delta G° = -2.303 \cdot 8.314 \cdot 300 \cdot 1 \] 4. **Calculate the product:** - First, calculate \(2.303 \cdot 8.314\): \[ 2.303 \cdot 8.314 \approx 19.15 \] - Now multiply by 300: \[ 19.15 \cdot 300 \approx 5745 \, \text{J mol}^{-1} \] 5. **Convert Joules to kilojoules:** \[ \Delta G° = -5745 \, \text{J mol}^{-1} = -5.745 \, \text{kJ mol}^{-1} \] 6. **Final answer:** \[ \Delta G° \approx -5.74 \, \text{kJ mol}^{-1} \] ### Conclusion: The value of \(\Delta G°\) is approximately \(-5.74 \, \text{kJ mol}^{-1}\).

To find the standard Gibbs free energy change (ΔG°) for the reaction at 300 K with an equilibrium constant (K) of 10, we can use the following equation: \[ \Delta G° = -2.303 \cdot R \cdot T \cdot \log K \] ### Step-by-Step Solution: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THERMODYNAMICS

    NCERT FINGERTIPS ENGLISH|Exercise HIGHER ORDER THINKING SKILLS|8 Videos
  • THERMODYNAMICS

    NCERT FINGERTIPS ENGLISH|Exercise NCERT EXEMPLAR PROBLEMS|11 Videos
  • THE S-BLOCK ELEMENTS

    NCERT FINGERTIPS ENGLISH|Exercise Assertion And Reason|15 Videos

Similar Questions

Explore conceptually related problems

Using the data given below, calculate the value of equilibrium constant for the reaction underset("acetylene")(3HC-= CH(g)) hArr underset("benzene")(C_6H_6)(g) at 298 K, assuming ideal behaviour. Delta_fG^@ HC -= CH(g) = 2.09 xx 10^5 J mol^(-1) , Delta_fG^@ C_6H_6(g) = 1.24 xx 10^5 J mol^(-1) R = 8.314 JK^(-1) mol^(-1)

The kinetic energy of two moles of N_(2) at 27^(@) C is (R = 8.314 J K^(-1) mol^(-1))

Knowledge Check

  • यदि x+y=90^(@) हो तब (1+(tan x)/(tan y)) sin^(2)y का मान क्या होगा?

    A
    0
    B
    `1//2`
    C
    1
    D
    2
  • यदि sin^(4) x +sin^(2)x =1 हो, तब cot^(4)x+cot^(2)x का मान क्या होगा?

    A
    `cos^(2)x`
    B
    `sin^(2)x`
    C
    `tan^(2)x`
    D
    1
  • Similar Questions

    Explore conceptually related problems

    The equilibrium constant for a reaction is 10 . What will be the value of DeltaG^(Θ) ? R=8.314 J K^(-1) mol^(-1), T=300 K .

    For a reaction, K_p = 1.8 xx 10^(-7) at 300K. What is the value of DeltaG^@ at this temeprature ? (R =8.314 J K^(-1) mol^(-1))

    For a reaction, K = 1.958 xx 10^(-4) at 400 K, what is the value of DeltaG^@ at this temepratuure ? (R = 8.314 J K^(-1) mol^(-1)) .

    The value of log_(10)K for the reaction : A harr B , If Delta H^(@) = - 55.07 kj "mole"^(-1) at 298K. Delta S^(@) = 10 jK^(-1) "mole"^(-1) at 298 K , R = 8.314 jK^(-1) "mole"^(-1)

    For the equilibrium, PCI_(5)(g) hArr PCI_(3)(g) +CI_(2)(g) at 25^(@)C K_(c) =1.8 xx 10^(-7) Calculate DeltaG^(Theta) for the reaction (R = 8.314 J K^(-1) mol^(-1)) .

    For a reversible reaction A hArr B . Find (log_(10)K)/(10) at 2727^(@) C temperature Given Delta_(r)H^(0) = - 54.07 kJ mol^(-1) Delta_(r)S^(0) = 10 JK^(-1) R = 8.314 JK^(-1) mol^(-1)