Home
Class 12
MATHS
If |z1|= |z2|=1 and amp z1+ampz2=0 then...

If `|z_1|`= `|z_2|`=1 and amp `z_1`+amp`z_2`=0 then

A

`z_1z_2=1`

B

`z_1+z_2`=0

C

`z_1=barz_2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given conditions: 1. \( |z_1| = |z_2| = 1 \) 2. \( \text{arg}(z_1) + \text{arg}(z_2) = 0 \) ### Step 1: Express the complex numbers in exponential form Since the magnitudes of both complex numbers are 1, we can express them in the form: \[ z_1 = e^{i\theta_1} \] \[ z_2 = e^{i\theta_2} \] ### Step 2: Use the argument condition From the condition \( \text{arg}(z_1) + \text{arg}(z_2) = 0 \), we have: \[ \theta_1 + \theta_2 = 0 \] This implies: \[ \theta_2 = -\theta_1 \] ### Step 3: Substitute \( \theta_2 \) into the expression for \( z_2 \) Now substituting \( \theta_2 \) into the expression for \( z_2 \): \[ z_2 = e^{i(-\theta_1)} = e^{-i\theta_1} \] ### Step 4: Check the product \( z_1 z_2 \) Now, we can find the product \( z_1 z_2 \): \[ z_1 z_2 = e^{i\theta_1} \cdot e^{-i\theta_1} = e^{0} = 1 \] ### Step 5: Check the sum \( z_1 + z_2 \) Next, we check the sum \( z_1 + z_2 \): \[ z_1 + z_2 = e^{i\theta_1} + e^{-i\theta_1} \] Using Euler's formula, we can rewrite this as: \[ z_1 + z_2 = \cos(\theta_1) + i\sin(\theta_1) + \cos(-\theta_1) + i\sin(-\theta_1) \] Since \( \sin(-\theta_1) = -\sin(\theta_1) \), we have: \[ z_1 + z_2 = \cos(\theta_1) + \cos(\theta_1) + i(\sin(\theta_1) - \sin(\theta_1)) = 2\cos(\theta_1) \] ### Step 6: Check the conjugate relationship The conjugate of \( z_2 \) is: \[ \overline{z_2} = e^{-i\theta_2} = e^{i\theta_1} = z_1 \] Thus, we find that: \[ z_1 = \overline{z_2} \] ### Conclusion From the above steps, we conclude: 1. \( z_1 z_2 = 1 \) (Option A is correct) 2. \( z_1 + z_2 = 2\cos(\theta_1) \) (This is not always zero) 3. \( z_1 = \overline{z_2} \) (Option C is correct) Thus, the correct options are A and C.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    A DAS GUPTA|Exercise EXERCISE|224 Videos
  • Circular Functions, Identities

    A DAS GUPTA|Exercise Exercise|300 Videos
  • Continuity, Differentiability and Graph of Function

    A DAS GUPTA|Exercise Exercise|38 Videos

Similar Questions

Explore conceptually related problems

If |z_(1)|=|z_(2)|andamp(z_(1))+amp(z_(2))=0, then

if |z_1| = |z_2| ne 0 and amp (z_1)/(z_2) = pi then

Knowledge Check

  • If |z_(1)|=|z_(2)|=|z_(3)| and z_(1)+z_(2)+z_(3)=0 , then z_(1),z_(2),z_(3) are vertices of

    A
    a right angled triangle
    B
    an equilateral triangle
    C
    isosceles triangle
    D
    scalene triangle
  • If |z_1-1|=Re(z_1),|z_2-1|=Re(z_2) and arg (z_1-z_2)=pi/3, then Im (z_1+z_2) =

    A
    `1/sqrt3`
    B
    `2/sqrt3`
    C
    `sqrt3/2`
    D
    `sqrt3`
  • If | z_(1)| = | z_(2)| = | z_(3)| and z_(1) + z_(2) + z_(3) = 0 , " then " z_(1), z_(2), z_(3) are vertices of

    A
    a right angled triangle
    B
    an equilateral triangle
    C
    isosceles triangle
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If |z_1 |=|z_2|=|z_3| = 1 and z_1 +z_2+z_3 =0 then the area of the triangle whose vertices are z_1 ,z_2 ,z_3 is

    If |z_1+z_2|=|z_1-z_2| and |z_1|=|z_2|, then (A) z_1=+-iz_2 (B) z_1=z_2 (C) z_=-z_2 (D) z_2=+-iz_1

    If |z_1+z_2| = |z_1-z_2| , prove that amp z_1 - amp z_2 = pi/2 .

    If |z-i|=1 and amp(z)=(pi)/(2)(z!=0), then z is

    Consider z_(1)andz_(2) are two complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| Statement -1 amp (z_(1))-amp(z_(2))=0 Statement -2 The complex numbers z_(1) and z_(2) are collinear.