Home
Class 12
MATHS
Prove that : tan^(-1)((sqrt(1+x^(2))+s...

Prove that :
`tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=pi/4+1/2cos^(-1)x^(2)`.

Answer

Step by step text solution for Prove that : tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=pi/4+1/2cos^(-1)x^(2). by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise NCERT EXAMPLAR PROBLEMS - OBJECTIVE TYPE QUESTIONS|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise NCERT EXAMPLAR PROBLEMS - FILLERS|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise NCERT EXAMPLAR PROBLEMS -SHORT ANSWER TYPE QUESTIONS|11 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-D)|2 Videos
  • LINEAR PROGRAMMING

    KUMAR PRAKASHAN|Exercise PRACTICE WORK|25 Videos

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=pi/4-1/2cos^(-1)x,-1/sqrt2lexle1

tan^(-1) [(sqrt(1+x^(2)) + sqrt(1-x^(2)))/(sqrt(1+ x^(2))- sqrt(1-x^(2)))], -1 lt x lt 1, x ne 0

Knowledge Check

  • int(1+x^(2))/(sqrt(1-x^(2)))dx=...

    A
    `(3)/(2)sin^(-1)x-(1)/(2)x sqrt(1-x^(2))+c`
    B
    `(3)/(2)sin^(-1)x+(1)/(2)x sqrt(1-x^(2))+c`
    C
    `(3)/(2)cos^(-1)e-(1)/(2)x sqrt(1-x^(2))+c`
    D
    `(3)/(2)cos^(-1)x+(1)/(2)x sqrt(1-x^(2))+c`
  • int(x^(3))/(sqrt(1+x^(2)))dx=a(1+x^(2))^((3)/(2))+b* sqrt(1+x^(2))+C

    A
    `a=(1)/(3) and b=1`
    B
    `a=-(1)/(3) and b=1`
    C
    `a=-(1)/(3) and b=-1`
    D
    `a=(1)/(3) and b=-1`
  • int(x)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3)) )) dx=....+c

    A
    `(1)/(2) log|+sqrt(1+x^(2))|`
    B
    `2 sqrt(1+sqrt(1+x^(2)))`
    C
    `2(1+sqrt(1+x^(2)))`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    (x+1) sqrt(2x^(2)+3)

    Prove that : cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in(0,pi/4)

    Prove that : cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in(0,pi/4)

    Prove that costan^(-1)sincot^(-1)x=sqrt((x^2+1)/(x^2+2))

    int(log(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx=....+c