Home
Class 12
MATHS
show that [((x+y)^2 , zx , zy),( zx, (...

show that
`[((x+y)^2 , zx , zy),( zx, (z+y)^2 ,xy),(zy,xy,(z+x)^2)]=2xyz (x +y+z)^3`

Answer

Step by step text solution for show that [((x+y)^2 , zx , zy),( zx, (z+y)^2 ,xy),(zy,xy,(z+x)^2)]=2xyz (x +y+z)^3 by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ANNUAL EXAMINATION :SAMPLE PAPER

    KUMAR PRAKASHAN|Exercise PART-B ( SECTION-B)|16 Videos
  • APPLICATION OF DERIVATIVES

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER - 6 (SECTION - D)|2 Videos

Similar Questions

Explore conceptually related problems

Using the property of determinants andd without expanding in following exercises 1 to 7 prove that |{:(x+y+2z,x,y),(z,y+z+2x,y),(z,x,z+x+2y):}|=2(x+y+z)^3

Using the property of determinants andd without expanding in following exercises 1 to 7 prove that |{:(x,x^2,yz),(y,y^2,zx),(z,z^2,xy):}|=(x-y)(y-z)(z-x)(xy+yz+zx)

Knowledge Check

  • If Delta = abs{:(x+y+z^(2) , x^(2) + y+ z, x+y^(2) + z),(z^2, x^2, y^2),(x+y,y+z,x+z):} , (where ( x ne y ne z) x, y, z in R- {0} ) then Delta= ........

    A
    `0`
    B
    `1`
    C
    `x+y+z`
    D
    `x^2 + y^2 + z^2`
  • Similar Questions

    Explore conceptually related problems

    Prove that |{:(yz-x^2,zx-y^2,xz-z^2),(zx-y^2,xy-z^2,yz-x^2),(xy-z^2,yz-x^2,zx-y^2):}|=|{:(r^2,U^2,U^2),(U^2,r^2,U^2),(U^2,U^2,r^2):}| where r^2+y^2+z^2 and U^2=xy+yz+zx (Hint : Use |adjA|=|A|^2|

    Prove that |{:(x^2,y^2,z^2),((x+1)^2,(y+1)^2,(z+1)^2),((x-1)^2,(y-1)^2,(z-1)^2):}|=-4(x-y)(y-z)(z-x)

    Verify that x ^(3) + y ^(3) + z ^(3) - 3xyz =1/2 (x + y + z) [(x-y)^(2) + (y-z) ^(2) + (z-x) ^(2) ]

    Using properties of determinants in Exercise 11 to 15 prove that |{:(x,x^2,1+px^3),(y,y^2,1+py^3),(z,z^2,1+pz^3):}|=(1+pxyz)(x-y)(y-z)(z-x)

    Using the proprties of determinants in Exercise 7 to 9, prove that |{:(y^2z^2,yz,y+z),(x^2z^2,zx,z+x),(x^2y^2,xy,x+y):}|=0

    The number of positive integral solutions of the equation |(x^3+1,x^2y,x^2z),(xy^2,y^3+1,y^2z),(xz^2,z^2y,z^3+1)|=11 is

    (a) If x + y + z=0, show that x ^(3) + y ^(3) + z ^(3)= 3 xyz. (b) Show that (a-b) ^(3) + (b-c) ^(3) + (c-a)^(3) =3 (a-b) (b-c) (c-a)