Home
Class 12
MATHS
Prove that int(-a)^(a)f(x)dx= {(2int(0...

Prove that `int_(-a)^(a)f(x)dx= {(2int_(0)^(a)f(x)dx ,"if f(x) is even function"),(0, "if f(x) is odd function"):}` and hence evaluate `int_(-(pi)/(2))^((pi)/(2))sin^(7)xdx`

Text Solution

Verified by Experts

The correct Answer is:
`int_(-(pi)/(2))^((pi)/(2))sin^(7)xdx =0`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • II PUC MATHEMATICS ANNUAL EXAM QUESTION PAPER JULY -2018

    SUNSTAR PUBLICATION|Exercise PART-D|11 Videos
  • II PUC MATHEMATICS (ANNUAL EXAM QUESTIONS PAPER MARCH -2019)

    SUNSTAR PUBLICATION|Exercise PART-D|14 Videos
  • II PUC MATHEMATICS ANNUAL EXAM QUESTION PAPER MARCH - 2020

    SUNSTAR PUBLICATION|Exercise PART - E|4 Videos

Similar Questions

Explore conceptually related problems

Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (b) int_(-pi//2)^(pi//2) sin^(7) x dx .

Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (d) int_(-pi//2)^(pi//2)tan^(9) xdx .

Knowledge Check

  • int_(-pi/2)^(pi/2) sin x. cosh x dx =

    A
    0
    B
    `pi/4`
    C
    `e^(pi)/4`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (c) int_(0)^(pi)|cosx|dx .

    Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (a) int_(-1)^(1) sin^(5)x cos^(4)xdx .

    Prove that: int_(-a)^(a) f(x) dx = {{:(2int_(0)^(a)f(x)dx, f(x) " is even "),(0, f(x) " is odd"):} and hence Evaluate int_(-t)^(t) sin^(5)(x)cos^(4)(x) dx

    Evaluate : int_(-pi/2) ^(pi/2) sin^2x dx

    Evaluate int_((-pi)/4)^(pi/4)sin^(2)x dx

    Prove that int_(a)^(b) f(x)dx=int_(a)^(c)f(x)dx+int_(c)^(b)f(x)dx

    Prove that underset(-a)overset(a)int f(x)dx={{:(,2underset(0)overset(a)int f(x)dx,"if f(x) is an even function"),(,0,"if f(x) is an odd function"):} and hence evaluate underset(-pi//2)overset(pi//2)int (x^(3)+x cos x)dx.