Home
Class 12
MATHS
hati*(hatj xx hatk)+hatj*(hati xx hatk)+...

`hati*(hatj xx hatk)+hatj*(hati xx hatk)+hatk*(hati xx hatj)` =……………

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    KUMAR PRAKASHAN|Exercise Practice Paper - 10 (Section-B)|4 Videos
  • VECTOR ALGEBRA

    KUMAR PRAKASHAN|Exercise Practice Paper - 10 (Section-C)|4 Videos
  • VECTOR ALGEBRA

    KUMAR PRAKASHAN|Exercise Solutions of NCERT Exemplar Problems (Multiple Choice Questions (MCQs) )|171 Videos
  • THREE DIMENSIONAL GEOMETRY

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER -11|16 Videos

Similar Questions

Explore conceptually related problems

Check whether the given three vectors are coplnar or non- coplanar : -2hati -2 hatj + 4hatk, -2hati + 4hatj -2hatk, 4hati - 2hatj - 2hatk .

The position vectors of the points A, B, C are 2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk respectively . These points

Knowledge Check

  • hati*(hatkxx hatj)+hatj*(hati xx hatk)+hatk*(hatj xx hati)+hati*(hati xx hatj)+hatj*(hatj xx hatk) = ………..

    A
    `-1`
    B
    1
    C
    3
    D
    `-3`
  • If vec(u)=hati xx(vec(a)xx hati)+hatj xx(vec(a)xx hatj)+hatk xx(vec(a)xx hatk) then vec(u) = ………..

    A
    0
    B
    `hati+hatj+hatk`
    C
    `2vec(a)`
    D
    `vec(a)`
  • If bar(mu)=hati xx(bar(a)xx hati)+hatj xx(bar(a)xx hatj))+hatk xx(bar(a)xx hatk) then bar(mu) = ………….

    A
    0
    B
    `hati+hatj+hatk`
    C
    `2bar(a)`
    D
    `bar(a)`
  • Similar Questions

    Explore conceptually related problems

    Find the direction cosines of the resultant of the vectors (hati+hatj+hatk),(-hati+hatj+hatk),(hati-hatj+hatk) and (hati+hatj-hatk) .

    Find the shortest distance between the lines vecr=(4hati-hatj)+lambda(hati+2hatj-3hatk) and vecr=(hati-hatj+2hatk)+mu(2hati+4hatj-5hatk) .

    If veca = 2 hati - hatj + hatk , vecb = hati + hatj - 2 hatk, vecc= hati + 3 hatj- hatk, if veca is perpendicular to lamda vecb + vecc. then the value of lamda is ________.

    Find the shortest distance between the lines vecr=(hati+2hatj+hatk)+lambda(hati-hatj+hatk) and vecr=2hati-hatj-hatk+mu(2hati+hatj+2hatk) .

    If vecA 2 hati +hatj -hatk, vecB=hati +2hatj +3hatk, vecC=6hati -2hatj-6hatk angle between (vecA+vecB) and vecC will be