Home
Class 11
MATHS
If f(x)=logx, g(x)=x^(3) then f[g(a)]+f[...

If `f(x)=logx, g(x)=x^(3)` then `f[g(a)]+f[g(b)]=`

A

f(g(a) + g(ab))

B

f(g(ab))

C

g(f(ab))

D

g(f(a)+f(b))

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|50 Videos
  • FUNCTIONS

    AAKASH SERIES|Exercise EXERCISE -I|53 Videos
  • ERRORS AND APPROXIMATIONS

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTION|15 Videos
  • HEIGHTS AND DISTANCES

    AAKASH SERIES|Exercise PRACTICE SHEET Exercise-I (Level-II) (Straight Objective Type Questions)|13 Videos

Similar Questions

Explore conceptually related problems

If f(x)=2x-1, g(x)=x^(2) , then (3f-2g)(x)=

If f(x)=x^(2), g(x)=x^(2)-5x+6 then (g(2)+g(2)+g(0))/(f(0)+f(1)+f(-2))=

Knowledge Check

  • If f(x) =x and g(x) =|x| , then f(x) + g(x) is equal to

    A
    0
    B
    `2x`
    C
    `2x` if `x ge 0` , 0 if `x lt 0`
    D
    `2x` if `x ge 0, -2x` if `x lt 0`
  • If f(x) =|x| ,g(x)=x then f(x) + g(x) is equal to:

    A
    `-2f`
    B
    `2|f|`
    C
    2f
    D
    `-|f|`
  • Similar Questions

    Explore conceptually related problems

    If f(x)=sin x + cos x, g(x)=x^(2)-1 , then g(f(x)) is invertible in the domain

    If f(x)=sin x + cos x, g(x)=x^(2)-1 , then g(f(x)) is invertible in the domain

    If f and g are real valued functions define by f(x)=2x-1 and g(x)=x^(2) then find (i) (3f-2g)(x)

    If f(x)=x^(2) and g(x)=|x| , then find (i) f+g

    If f(x)=x^(2) and g(x)=|x| , then find (ii) f-g

    If f and g are real valued functions defined by f(x) = 2x-1 and g(x)=x^(2) then find: (i) (3f-2g)(x), (ii) (fg)(x), (iii) sqrt(f)/g (x) , (iv) (f+g+2)(x)