Home
Class 11
MATHS
Assertion (A) : If A gt 0, B gt 0 and A+...

Assertion (A) : If `A gt 0, B gt 0 and A+B=(pi)/(3)` then the maximum value of Tan A tan B is `(1)/(3)`
Reason (R) : If `a_(1)+a_(2)+a_(3)+....a_(n)=k` (constant) then value of `a_(1)a_(2)....a_(n)` is greatest when `a_(1)=a_(2).....a_(n)`

A

A is ture and R is true, `R rArr A`

B

A is true, and R is true, `R cancel rArrA`

C

A is true, R is false

D

A is false, R is true

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • REVISION EXERCISE

    AAKASH SERIES|Exercise MULTIPLE & SUB MULTIPLE ANGLES|20 Videos
  • REVISION EXERCISE

    AAKASH SERIES|Exercise TRANSFORMATIONS AND IDENTITIES|14 Videos
  • REVISION EXERCISE

    AAKASH SERIES|Exercise PROPERTIES OF TRIANGLES|57 Videos
  • REAL FUNCTIONS

    AAKASH SERIES|Exercise EXERCISE-1|34 Videos
  • STRAIGHT LINES

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II (ADVANCED) PRACTICE SHEET (ADDVANCED)) (Comprehension Type Questions)|6 Videos

Similar Questions

Explore conceptually related problems

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then prove that a_(0)+a_(1)+a_(2)…..+a_(2n)=3^(n)

n^(th) term of an A.P. is a_(n) . If a_(1)+a_(2)+a_(3) = 102 and a_(1) = 15 , then find a_(10) .

Knowledge Check

  • a_(n) = (n-1) (n-2) then a_(2) = ……….

    A
    1
    B
    0
    C
    2
    D
    3
  • If a_(1), a_(2)…….,a_(n) are in H.P., then the expression a_(1)a_(2) + a_(2)a_(3) + ……. + a_(n-1) a_(n) =

    A
    `na_(1)a_(n)`
    B
    `(n -1) a_(1)a_(n)`
    C
    `n(a_(1) - a_(n))`
    D
    `(n - 1) (a_(1) - a_(n))`
  • a_(n) = n/(n+2) , a_(3) = ……….

    A
    `1//2`
    B
    `5//3`
    C
    `3//5`
    D
    none
  • Similar Questions

    Explore conceptually related problems

    If |a_1Sinx+a_(2)sin2x+.....+a_(n)sinx|le|sinx| for x in R then maimum value of |a_(1)+2a_(2)+3a_(3)+.....+na_(n)| is

    The number of constant functions that can be defined from the set A={a_(1), a_(2), a_(3)…, a_(n)} to the set B={b_(1), b_(2),….b_(n)} is

    If a_(n) = (n(n+3))/(n+2) , then find a_(17) .

    If a_(1), a_(2),…a_(n) are in H.P. then a_(1).a_(2) + a_(2).a_(3) + a_(3).a_(4) + …+ a_(n-1) .a_(n) =

    If a_(1) lt ( 28)^((1)/( 3)) - 3 lt b_(1) , then (a_(1) b_(1)) ( a_(1) , b_(1)) is