Home
Class 12
MATHS
If the circles x^2+y^2+2a x+c=0a n dx^2+...

If the circles `x^2+y^2+2a x+c=0a n dx^2+y^2+2b y+c=0` touch each other, then `1/(a^2)+1/(b^2)=1/c` (b) `1/(a^2)+1/(b^2)=1/(c^2)` (c) `a+b=2c` (d) `1/a+1/b=2/c`

A

`1//c`

B

c

C

`(1)/(c^(2))`

D

`c^(2)`

Text Solution

Verified by Experts

The correct Answer is:
A

`x^(2)+y^(2)+2ax+c=0,x^(2)+y^(2)+2by+c=0`
Common tangent at common point `ax-by=0`
Perpendicular distance from centre = radius
`x^(2)+y^(2)+2ax+c=0" "(-a,0)`
`|(-a^(2))/(sqrt(a^(2)+b^(2)))|=sqrt(a^(2)-c)impliesa^(4)=(a^(2)+b^(2))(a^(2)-c)`
`a^(4)=a^(4)+a^(2)b^(2)-c(a^(2)+b^(2))`
`(1)/( c )=(1)/(a^(2))+(1)/(b^(2))`
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If the circles x^(2)+y^(2)+2ax+c=0 and x^(2)+y^(2)+2by+c=0 touch each other,then (1)/(a^(2))+(1)/(b^(2))=(1)/(c)(b)(1)/(a^(2))+(1)/(b^(2))=(1)/(c^(2))(c)a+b=2c(d)(1)/(a)+(1)/(b)=(2)/(c)

Prove that the circles x^(2)+y^(2)+2ax+c^(2)=0andx^(2)+y^(2)+2by+c^(2)=0 touch each other, if (1)/(a^(2))+(1)/(b^(2))=(1)/(c^(2)) .

Knowledge Check

  • If the circles (x-a)^(2)+(y-b)^(2)=c^(2) and (x-b)^(2)+(y-a)^(2)=c^(2) touch each other, then

    A
    `a=bpm 2c`
    B
    `a=b pm sqrt(2)c`
    C
    `a=b pm c`
    D
    none of these
  • If the circles (x-a)^(2)+(y-b)^(2)=c^(2) and (x-b)^(2)+(y-a)^(2)=c^(2) touch each other, then

    A
    `a=b pm 2c`
    B
    `a=b pm sqrt(2)c`
    C
    `a= b pm c`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    Prove that the circle x^(2) + y^(2) + 2ax + c^(2) = 0 and x^(2) + y^(2) + 2by + c^(2) = 0 touch each other if (1)/(a^(2)) + (1)/(b^(2)) = (1)/(c^(2)) .

    If two circles x^(2)+y^(2)+c^(2)=2ax and x^(2)+y^(2)+c^(2)-2by=0 touch each other externally , then prove that (1)/(a^(2))+(1)/(b^(2))=(1)/(c^(2))

    If a b+b c+c a=0 , then what is the value of (1/(a^2-b c)+1/(b^2-c a)+1/(c^2-a b)) ? (a) 0 (b) 1 (c) 3 (d) a+b+c

    If a+b=2c, then the value of (a)/(a-c)+(b)/(b-c) is (1)/(2)(b)1(c)2(d)3

    If y=x^(3)-c and y=x^(2)+ax+b touch each other at the point (1,2) , then (|a|+|b|+|c|)/(|a+b-c|)=?

    Let the parabolas y=x(c-x) and y=x^(2)+ax+b touch each other at the point (1,0). Then a+b+c=0a+b=2b-c=1(d)a+c=-2