Home
Class 11
MATHS
If sin A=1//sqrt(10), sin B= 1//sqrt(5) ...

If `sin A=1//sqrt(10), sin B= 1//sqrt(5) ` where A and B are positive and acute , then A +B=

A

`(pi)/(2)`

B

`(pi)/(3)`

C

`(pi)/(4)`

D

`(pi)/(5)`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPOUND ANGLES

    AAKASH SERIES|Exercise PRACTICE EXERCISE|46 Videos
  • COMPOUND ANGLES

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I)|43 Videos
  • COMPOUND ANGLES

    AAKASH SERIES|Exercise EXERCISE - I|28 Videos
  • CHANGE OF AXES

    AAKASH SERIES|Exercise Practice Exercise|29 Videos
  • CONTINUITY

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS|34 Videos

Similar Questions

Explore conceptually related problems

If sin =(1)/(sqrt10), sin beta =(1)/(sqrt5) and alpha , beta are acute, show that alpha + beta = pi//4

If sin (A-B) =(1)/(2) ,cos (A+B) =(1)/(2) , where 0^@ lt A +B lt 90 ^(@) and A gt B find A and B

Knowledge Check

  • If int(dx)/((1+sqrt(x))sqrt(x-x^(2)))=(Asqrt(x))/(sqrt(1-x))+(B)/(sqrt(1-x))+C , where C is a real constant then A+B=

    A
    0
    B
    1
    C
    2
    D
    3
  • If 90^(@) lt A lt 180^(@) , 180^(@) lt B lt 270^(@) and cos A=-(sqrt(3))/(2) , sin B=-(3)/(5) "then" ( 2 tan B + sqrt(3) tan A)/( cot^(2) A + cos B) =

    A
    `5//22`
    B
    `-5//22`
    C
    `22//5`
    D
    `-22//5`
  • sin ^(-1) (sqrt(3))/(2) + sin ^(-1) sqrt(2/3)=

    A
    `sin ^(-1) (sqrt(3)+sqrt(2))/(2 sqrt(3))`
    B
    `pi - sin ^(-1) ((sqrt(3)+sqrt(2))/(2sqrt(3)))`
    C
    `- pi - sin ^(-1) ((sqrt(3)+sqrt(2))/(2sqrt(3)))`
    D
    `pi + sin ^(-1) ((sqrt(3)+sqrt(2))/(2sqrt(3)))`
  • Similar Questions

    Explore conceptually related problems

    If sin (A-B) =(1)/(2), cos (A+B) =(1)/(2)," where "0^(@) lt A + B le 90^(@) and A gt B , find A and B

    Sin^-1 sqrt3/2 +sin^-1 sqrt(2/3) =

    If sin 18^(@)=(sqrt(5)-1)/(4) , then sin 81^(@)=

    If sin ^(-1) (sqrt8) + sin h ^(-1) (sqrt24) = alpha, then sin h alpha=

    Find the value of (sqrt(1+sin2A)+sqrt(1-sin2A))/(sqrt(1+sin2A)-sqrt(1-sin2A)) , when | tan A | lt 1 and |A| is acute .