Home
Class 11
MATHS
((n),(0))-((n),(1))+((n),(2))-((n),(3))+...

`((n),(0))-((n),(1))+((n),(2))-((n),(3))+((n),(4))-((n),(5)).........+(-1)^(n)((n),(n))=.......` .

Text Solution

Verified by Experts

The correct Answer is:
0
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • OBJECTIVE SECTION AS PER NEW PAPER SCHEME

    KUMAR PRAKASHAN|Exercise Sequence and Series (True /False Statement)|14 Videos
  • OBJECTIVE SECTION AS PER NEW PAPER SCHEME

    KUMAR PRAKASHAN|Exercise Straight Lines (Fill in the blanks )|40 Videos
  • OBJECTIVE SECTION AS PER NEW PAPER SCHEME

    KUMAR PRAKASHAN|Exercise Binomial Theorem (Fill in the blanks )|16 Videos
  • MATHEMATICAL REASONING

    KUMAR PRAKASHAN|Exercise QUESTION OF MODULE (Knowledge Test:)|2 Videos
  • PERMUTATIONS AND COMBINATIONS

    KUMAR PRAKASHAN|Exercise PRACTICE WORK |40 Videos

Similar Questions

Explore conceptually related problems

((n),(1))+((n),(2))+((n),(3))+...........+((n),(n-1))= ......... .

Let S_(n)(x)=(x^(n-1)+(1)/(x^(n-1)))+2(x^(n-2)+(1)/(x^(n-2)))+"....."+(n-1)(x+(1)/(x))+n , then

Knowledge Check

  • Definite integration as the limit of a sum : lim_(ntooo)[(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+.........+(1)/(8n)]=........

    A
    `(3)/(8)`
    B
    `(1)/(8)`
    C
    `(1)/(3)`
    D
    `(8)/(3)`
  • Definite integration as the limit of a sum : lim_(ntooo)[(1)/(n)+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+.......+(1)/(sqrt(n^(2)+(n-1)n))]=.........

    A
    `2+2sqrt2`
    B
    `2sqrt2-2`
    C
    `2sqrt2`
    D
    2
  • Definite integration as the limit of a sum : lim_(ntooo)[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))(1+(3^(2))/(n^(2)))......(1+(n^(2))/(n^(2)))]^(1/n)=.......

    A
    `2e^((pi-4)/(2))`
    B
    `e^((pi-4)/(2))`
    C
    `e^(1/((pi-4)/(2)))`
    D
    `(1)/(2)e^((pi-4)/(2))`
  • Similar Questions

    Explore conceptually related problems

    lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n) is equal to

    Find n, ""^(n+5)P_(n+1)=(11)/(2)(n-1)*""^(n+3)P_(n).

    Find n, ""^(n+5)P_(n+1)=(11)/(2)(n-1)*""^(n+3)P_(n).

    P(n) : 1^(2) + 2^(2) + 3^(2) + .......+ n^(2) = n/6(n+1) (2n+1) n in N is true then 1^(2) +2^(2) +3^(2) + ........ + 10^(2) = .......

    Definite integration as the limit of a sum : lim_(ntooo)[(n)/(1+n^(2))+(n)/(4+n^(2))+(n)/(9+n^(2))+.........+(n)/(2n^(2))]=......