Home
Class 11
MATHS
The expression cos^(2)(alpha+beta)+cos^(...

The expression `cos^(2)(alpha+beta)+cos^(2)(alpha-beta)-cos2alpha cos2beta`, is

A

`-1`

B

2

C

independent of `alpha` and `beta`

D

dependent on `alpha` and `beta`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPOUND ANGLES

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II) ADVANCED|5 Videos
  • COMPOUND ANGLES

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - I) LEVEL - II|4 Videos
  • CHANGE OF AXES

    AAKASH SERIES|Exercise Practice Exercise|29 Videos
  • CONTINUITY

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS|34 Videos

Similar Questions

Explore conceptually related problems

Prove that cos^(2)(alpha-beta)+cos^(2)beta-2cos(alpha-beta)cosalphacosbeta is independent of beta .

Prove that sin^(2)alpha + cos^(2) (alpha + beta) + 2 sin alpha sin beta cos (alpha + beta) is independent of alpha .

Knowledge Check

  • If tan alpha and tan beta are the roots of the equation x^(2) +px + q = 0 , then the value of sin^(2) (alpha +beta) + p cos (alpha + beta) sin (alpha + beta) + q cos^(2) (alpha + beta) is

    A
    p + q
    B
    p
    C
    q
    D
    `(p)/(p +q)`
  • If alpha+beta=gamma. then cos^(2)alpha+cos^(2)beta+cos^(2)gamma-2 cos alpha cos beta cos gamma=

    A
    1
    B
    `0`
    C
    `-1`
    D
    `2`
  • If sin(theta+alpha)=a and sin (theta+ beta) , then cos2(alpha-beta)-4ab cos(alpha -beta) =

    A
    `1-a^2-b^2`
    B
    `1-2a^2-2b^2`
    C
    `2+a^2-b^2`
    D
    `2-a^2-b^2`
  • Similar Questions

    Explore conceptually related problems

    (i) sin (alpha + beta) = sin alpha cos beta + cos alpha sin beta) (ii) sin (alpha-beta)= sin alpha cos beta- cos alpha sin beta Proof

    Prove that sin^(2)alpha+cos^(2)(alpha+beta)+2sinalphasinbetacos(alpha+beta) is independent of alpha .

    If tan alpha, tan beta are the roots of the equation x^(2)+px+q=0 then sin^(2) (alpha+ beta)+ p sin(alpha+ beta) (cos+beta) +q cos^(2)(alpha+ beta)=

    IF alpha , beta are the roots of the equation ax ^2 + bx +c=0 , then the value of the determinant |(1, cos ( beta - alpha ), cos alpha ),( cos (alpha- beta ),1,cos beta ),( cos alpha , cos beta , 1)|

    2 sin^(2) beta + 4 cos( alpha+ beta) sin alpha sin beta + cos ( 2 alpha + 2 beta )=