Home
Class 11
MATHS
Let (x, y) be such that sin^(-1)(ax)+cos...

Let (x, y) be such that `sin^(-1)(ax)+cos^(-1)(y)+cos^(-1)(bxy)=pi//2`. Match the statements in column I with statements in column II.
`{:("Column I", "Column II"), ("A) If a = 1 and b = 0, then (x, y)", "p) lies on the circle "x^(2)+y^(2)=1), ("B) If a = 1 and b = 1, then (x, y)", "q) lies on "(x^(2)-1)(y^(2)-1)=0), ("C) If a = 1 and b = 2, then (x, y)", "r) lies on y = x"), ("D) If a = 2 and b = 2, then (x, y)", "s) lies on "(4x^(2)-1)(y^(2)-1)=0):}`

Text Solution

Verified by Experts

The correct Answer is:
A-p;B-q;C-p;D-s
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - II) (LINKED COMPREHENSION TYPE QUESTIONS)|3 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - II) (INTEGER TYPE QUESTIONS)|2 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - II) (MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)|4 Videos
  • HYPERBOLIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET EXERCISE-II (STRAIGHT OBJECTIVE TYPE QUESTIONS)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Let (x,y) be such that sin^(-1)(ax)+cos^(-1)(y)+cos^(-1)(bxy)=pi//2 . Match the statements in column I which statements in column II.

The tangent to the circle x^(2)+y^(2)-4x+2y+k=0 at (1,1) is x-2y+1=0 then k=

Knowledge Check

  • Point P(x,y) satisfying the equation sin^(-1)x+cos^(-1)y+cos^(-1)(2xy)=(pi)/2 lies on

    A
    the bisector of the first and third quadrant
    B
    bisector of the second and fourth quadrant.
    C
    the rectangle formed by the lines `x=+-1` and `y=+-1`
    D
    a unit circle with centre at the origin.
  • Point P(x, y) satisfying the equation Sin^(-1)x+Cos^(-1)y+Cos^(-1)(2xy)=pi/2 lies on

    A
    the bisector of the first and third quadrant
    B
    bisector of the second and fourth quadrant.
    C
    the rectangle formed by the lines `x=pm1 and y=pm1`.
    D
    a unit circle with centre at the origin.
  • If sin^(-1)x+sin^(-1)y=pi/2 and sin2x=cos2y , then

    A
    `x=pi/8+sqrt(1/2-pi^(2)/64)`
    B
    `y=sqrt(1/2-pi^(2)/64)-pi/12`
    C
    `x=pi/12+sqrt(1/2-pi^(2)/64)`
    D
    `y=sqrt(1/2-pi^(2)/64)-pi/8`
  • Similar Questions

    Explore conceptually related problems

    Consider the line given by L_1=X+3Y-5=0, L_2=3x-ky-1=0 , match the statements/expressions " in Column-I with the " statements /expression in Column-II.

    Let t_(1)=(sin^(-1)x)^(sin^(-1)x),t_(2)=(sin^(-1)X)(cos^(-1)x),t_(3)=(cos^(-1)x)^(sin^(-1)x), t_(4)=(cos^(-1)x)^(cos^(-1)x) Match the items of column I with the items Column II

    The circles orthogonal to the three circles x^(2) + y^(2) + a_(i)x + b_(i)y + c = 0 , I = 1,2,3 is

    If x ^(2) - 2x ^(2) y ^(2) + 5x + y-5 =0 and y (1) then y '' (1)=

    If x - y + 1 = 0 meets the circle x^(2) + y^(2) + y - 1 = 0 at A and B , then the equation of the circle with AB as diameter is