Home
Class 11
MATHS
If the roots of the equation x^(3)-10x+1...

If the roots of the equation `x^(3)-10x+11=0` are u, v, and w, then the value of
`3cosec^(2)(tan^(-1)u+tan^(-1)v+tan^(-1)w)` is

Text Solution

Verified by Experts

The correct Answer is:
6
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-III) (LEVEL - I STRAIGHT OBJECTIVE TYPE QUESTIONS)|21 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - I (MAIN) STRAIGHT OBJECTIVE TYPE QUESTIONS)|31 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-II) (LEVEL - II LINKED COMPREHENSION TYPE QUESTIONS)|3 Videos
  • HYPERBOLIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET EXERCISE-II (STRAIGHT OBJECTIVE TYPE QUESTIONS)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

The value of cot("cosec"^(-1)5/3+"tan"^(-1)2/3) is

If tan^(-1)(3)+tan^(-1)(x)=tan^(-1)(8) then x=

Knowledge Check

  • The value of 2tan^(-1)(cosec(tan^(-1)x)-tan(cot^(-1)x)) is equal to

    A
    `cot^(-1)x`
    B
    `cot^(-1)""1/x`
    C
    `tan^(-1)x`
    D
    none of these
  • If tan alpha, tan beta, tan lambda are the roots of the equation x^(3) - px^(2) - r = 0 then the value of (1+tan^(2) alpha) (1+tan^(2) beta)(1+tan^(2)lambda) =

    A
    `1+(p-r)^(2)`
    B
    `2+(p-r)^(2)`
    C
    `3+(p+r)^(2)`
    D
    `1-(p-r)^(2)`
  • If alpha, beta, gamma are the roots of the equation x^(3)+mx^(2)+3x+m=0 , then the general value of Tan^(-1)alpha+Tan^(-1)beta+Tan^(-1)gamma is

    A
    `(2n+1)pi/2`
    B
    `npi`
    C
    `(npi)/2`
    D
    dependent upon the value of m
  • Similar Questions

    Explore conceptually related problems

    The value of cot("Cosec"^(-1)5/3+"Tan"^(-1)2/3) is

    The value of x where x gt0 and tan("sec"^(-1)1/x)=sin(tan^(-1)2) is

    If the equation x^(3)+bx^(2)+cx+1=0, (bltc) has only one real root alpha then the value of 2tan^(-1)(cosec alpha)+tan^(-1)(2sin alpha sec^(2)alpha) is

    If alpha and beta are the roots of the quadratic equation 3x^2 -16 x+5 =0 then tan^(-1) alpha +tan ^(-1) beta -tan ^(-1) ((alpha+beta)/(1- alpha beta))=

    The value of x where x gt 0 and tan(Sec^(-1)(1/x))=sin(Tan^(-1)2) is