Home
Class 11
MATHS
If f(x) = |{:(sinx,sina, sin b),(cos x ,...

If `f(x) = |{:(sinx,sina, sin b),(cos x , cos a, cos b),(tanx,tana,tanb):}|`,where `0 lt a lt b lt ( pi )/(2)`, then the equation `f'(x) = 0` has, in the interval (a,b)

A

Atleast one root

B

atmost one root

C

no root

D

exactly one root

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MEAN VALUE THEOREMS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I (LEVEL-II (MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS ) )|2 Videos
  • MEAN VALUE THEOREMS

    AAKASH SERIES|Exercise LECTURE SHEET(EXERCISE-I (MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)|1 Videos
  • MAXIMA AND MINIMA

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II (PRACTICE SHEET )(ADVANCED)) (INTEGER TYPE QUESTIONS)|3 Videos
  • MULTIPLE & SUBMULTIPLE

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - II) (LEVEL - II) (Linked Comprehension Type Questions)|5 Videos

Similar Questions

Explore conceptually related problems

For 0 lt x lt (pi)/(2) , prove that cos (sin x) gt sin (cos x) .

continuous at x = 0 Let f(x) = {{:((1 + |sin x| )^((a)/(|sin x|)), - (pi)/(6) lt x lt 0 ),(b , x = 0 ),(e^(tan 2x //tan 3x), 0 lt x lt (pi)/(6)):} Determine a and b such that f(x) continuous at x = 0 .

Knowledge Check

  • If 0 lt x lt pi and cos x + sin x=1/(2) , then tanx =

    A
    `((4-sqrt7))/3`
    B
    `-((4+sqrt7))/3`
    C
    `-((1+sqrt7))/4`
    D
    `((1-sqrt7))/4`
  • If 0 lt x lt pi , and cos x+ sin x =1//2 , then tan x=

    A
    `-(4+sqrt(7))//3`
    B
    `(1+sqrt(7))//4`
    C
    `(1-sqrt(7))//4`
    D
    `(4-sqrt(7))//4`
  • The locus of the point ( a cos theta, b sin theta ) where 0 le theta lt 2 pi is

    A
    ` sqrtx + sqrt v = sqrt (ab)`
    B
    `sqrt(( x )/(a)) + sqrt ((y)/(b)) = 1 `
    C
    ` (x ^ 2 )/(a^ 2 ) + (y^ 2 )/(b^ 2 ) = 1 `
    D
    ` (x ) /(a) + (y)/(b) = 1 `
  • Similar Questions

    Explore conceptually related problems

    If 0 lt A lt B lt pi/4 and sin(A+B)=24/25 and cos(A-B)=4/5 , then find the value of tan 2A.

    If cos h x=(sqrt(14))/(3),sin h x = cos theta and -pi lt theta lt -(pi)/(2) , then sin theta=

    Lt_(x to (pi)/(2)) (sin x)^(tanx)=

    Let f(x) = {:{( sin x +cos x, 0 lt x lt (pi)/(2) ),( a, x = pi//2) , ( tan ^(2) x + cosecx , pi//2lt xlt pi ):} then its odd extension is

    If 0 lt a lt b , then int_(a)^(b) (|x|)/(x) dx=