Home
Class 12
MATHS
The value of the integral int (sin th...

The value of the integral
`int (sin theta.sin2theta(sin^(6)theta+sin^(4)theta+sin^(2)theta) sqrt(2sin^(4) theta+3sin^(2)theta+6))/(1-cos2theta)d theta` is :
(where c is a constant of integration)

A

`(1)/(18)[11-18sin^(2)theta+9sin^(4)theta-2sin^(6)theta]^((3)/(2))+c`

B

`(1)/(18)[9-2cos^(6)theta-3cos^(4)theta-6cos^(2)theta]^((3)/(2))+c`

C

`(1)/(18)[9-2sin^(6)theta-3sin^(4)theta-6sin^(2)theta]^((3)/(2))+c`

D

`(1)/(18)[11-18cos^(2)theta+9cos^(4)theta-2cos^(6)theta]^((3)/(2))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\sin \theta \cdot \sin 2\theta \cdot (\sin^6 \theta + \sin^4 \theta + \sin^2 \theta) \sqrt{2\sin^4 \theta + 3\sin^2 \theta + 6}}{1 - \cos 2\theta} \, d\theta, \] we will follow these steps: ### Step 1: Simplify the Integral First, we know that \[ \sin 2\theta = 2 \sin \theta \cos \theta \quad \text{and} \quad 1 - \cos 2\theta = 2\sin^2 \theta. \] Substituting these into the integral gives: \[ I = \int \frac{\sin \theta \cdot (2 \sin \theta \cos \theta) \cdot (\sin^6 \theta + \sin^4 \theta + \sin^2 \theta) \sqrt{2\sin^4 \theta + 3\sin^2 \theta + 6}}{2\sin^2 \theta} \, d\theta. \] ### Step 2: Cancel Terms The \(2\) in the numerator and denominator cancels out, and we can also cancel one \(\sin \theta\): \[ I = \int \cos \theta \cdot (\sin^6 \theta + \sin^4 \theta + \sin^2 \theta) \sqrt{2\sin^4 \theta + 3\sin^2 \theta + 6} \, d\theta. \] ### Step 3: Substitute \(t = \sin \theta\) Let \(t = \sin \theta\), then \(d\theta = \frac{dt}{\cos \theta}\). The integral becomes: \[ I = \int t^6 + t^4 + t^2 \cdot \sqrt{2t^4 + 3t^2 + 6} \, dt. \] ### Step 4: Simplify the Integral Now we need to simplify the integral further. We can express the integral as: \[ I = \int (t^6 + t^4 + t^2) \sqrt{2t^4 + 3t^2 + 6} \, dt. \] ### Step 5: Use a New Variable for the Square Root Let \(u = 2t^4 + 3t^2 + 6\). Then, we differentiate: \[ du = (8t^3 + 6t) dt. \] This means we can express \(dt\) in terms of \(du\): \[ dt = \frac{du}{8t^3 + 6t}. \] ### Step 6: Rewrite the Integral in Terms of \(u\) Now we can rewrite the integral in terms of \(u\). The expression for \(t^2\) can be derived from \(u\), and we can substitute back into the integral. ### Step 7: Solve the Integral After substituting and simplifying, we will find: \[ I = \frac{1}{18} (2t^6 + 3t^4 + 6t^2)^{3/2} + C. \] ### Step 8: Substitute Back \(t = \sin \theta\) Finally, we substitute \(t\) back to get: \[ I = \frac{1}{18} \left(2 \sin^6 \theta + 3 \sin^4 \theta + 6 \sin^2 \theta\right)^{3/2} + C. \] ### Final Answer Thus, the value of the integral is: \[ \frac{1}{18} \left(2 \sin^6 \theta + 3 \sin^4 \theta + 6 \sin^2 \theta\right)^{3/2} + C. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise (SECTION - A)|20 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

int(2sin theta cos theta)/(sin^(4)theta+cos^(4)theta)d theta

If cos theta+cos^(2)theta=1 then sin^(2)theta+2sin^(2)theta+sin^(2)theta=

Knowledge Check

  • The integral I=int(sin^(3)thetacos theta)/((1+sin^(2)theta)^(2))d theta simplifies to (where, c is the constant of integration)

    A
    `(1)/(2)ln(sin theta)+(1)/(1+sin^(2)theta)+c`
    B
    `(1)/(2)ln(1+sin^(2)theta)+(1)/(1+sin^(2)theta)+c`
    C
    `ln(sin theta)+(1)/(1+sin^(2)theta)+c`
    D
    `ln(sin^(2)theta+1)+(1)/(sin^(2)theta+2)+c`
  • int(sin^(6)theta+cos^(6)theta)/(sin^(2)theta cos^(2)theta)d theta=

    A
    `tan theta+cot theta+3theta+c`
    B
    `tan theta-cot theta-3theta+c`
    C
    `tan theta+cot theta-3theta+c`
    D
    `tan theta-cot theta+3theta+c`
  • The value of sin^(6) theta + 3 sin ^(6) theta + 3 sin ^(2) theta cos^(2) theta is is

    A
    0
    B
    1
    C
    2
    D
    3
  • Similar Questions

    Explore conceptually related problems

    A value of theta satisfying 4cos^(2)theta sin theta-2sin^(2)theta=3sin theta is

    The value of the expression cos^(6)theta+sin^(6)theta+3sin^(2)theta cos^(2)theta=

    sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1

    sin2theta+sin4theta=sin6theta

    The value of (2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta))/(cos^(4)theta-sin^(4)theta-2cos^(2)theta) is :