Home
Class 12
PHYSICS
vec(A) and vec(B) are two vectors given ...

`vec(A) and vec(B)` are two vectors given by `vec(A) = 2hat(i) + 3hat(j) and vec(B)= hat(i) + hat(j)`. The magnitude of the component of `vec(A)` along `vec(B)` is

A

`(5)/(sqrt2)`

B

`(3)/(sqrt2)`

C

`(7)/(sqrt2)`

D

`(1)/(sqrt2)`

Text Solution

Verified by Experts

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUESTION PAPER 2008

    WB JEE PREVIOUS YEAR PAPER|Exercise PHYSICS|38 Videos
  • QUESTION PAPER 2010

    WB JEE PREVIOUS YEAR PAPER|Exercise PHYSICS|45 Videos

Similar Questions

Explore conceptually related problems

If vec A=4 hat i+6 hat j and vec B=3 hat j+4 hat k , then find the component of vec A along vec B

If vec(a) = hat (i) +hat (j) , vec (b) = hat(i) - hat(j) and vec(c ) = 5 hat (i) + 2 hat (j) + 3 hat(k) , find the value of [ vec(b)vec (c ) vec(a)]

Knowledge Check

  • If vec (a) = 2 hat (i) - hat (j ) and vec (b) = 3 hat (i) - 2 hat (j) + 4 hat (k) , then the value of vec (a) xx vec (b) is -

    A
    ` 4 hat (i) - 8 hat (i) - hat (k)`
    B
    `-4hat(j) - hat (j) + hat(k)`
    C
    `4hat(i) - 8hat(j) + hat (k)`
    D
    `-4hat(i) - 8 hat (j) - hat (k)`
  • If vec (a)= 2 hat (i) - hat (j) + hat (k) and vec(b) = - hat (i) + 3 hat (j) + 4 hat (k) , then value of vec (a). vec(b) is -

    A
    1
    B
    3
    C
    `-3`
    D
    `-1`
  • If vec(OA)=hat(i)-2hat(k) " and " vec(OB)=3hat(i)-2hat(j) then the direction cosines of the vector vec(AB) are -

    A
    `1/sqrt(3),1/sqrt(3),-1/sqrt(3)`
    B
    `2,2,2`
    C
    `-1/sqrt(3),-1/sqrt(3),1/sqrt(3)`
    D
    `-1/sqrt(3),1/sqrt(3),-1/sqrt(3)`
  • Similar Questions

    Explore conceptually related problems

    If vec(a)=2hat(i)-5hat(j)+3hat(k) " and " vec(b)=hat(i)-2hat(j)-4hat(k) , find the value of abs(3vec(a)+2vec(b)).

    Find the projection of vector (vec(b)+vec(c )) on vector vec(a) where vec(a) = hat (i) + 2 hat (j) + hat (k) , vec(b) = hat (i) + 3 hat (j) + hat (k) and vec c = hat (i) + hat (k)

    Let vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec (b) = hat (j) - hat (k) and vec(c ) = - hat (i) + 3 hat (j) + 2 hat (k) be three given vectors .Find sine of the angle vec(a) and vec (c )

    Find vec adot vec b when: vec a= hat j- hat k\ a n d\ vec b=2 hat i+3 hat j-2 hat k

    If vec(a) = hat(i) - hat(j) + 2hat(k) , vec(b) = hat(i) +hat(j) +hat(k) and vec(c ) = 2 hat(i) - hat(j) + hat(k) find the vector vec (r ) satisfying the relations , vec(a) . vec(r ) = 1 , vec(b). vec(r ) = 2 and vec(c ) . vec (r ) = 5