Home
Class 11
MATHS
If f(x) = 2(7 cos x + 24 sinx ) (7 sin x...

If `f(x) = 2(7 cos x + 24 sinx ) (7 sin x-24 cos x)`, for every `x inR`, then maximum value of `(f(x) )^(1//4)` is _________

Text Solution

Verified by Experts

The correct Answer is:
5
Promotional Banner

Topper's Solved these Questions

  • PERIODICITY AND EXTREME VALUES

    AAKASH SERIES|Exercise Practice Sheet (Exericise-I) Level-I (Straight Objective Type Questions)|20 Videos
  • PERIODICITY AND EXTREME VALUES

    AAKASH SERIES|Exercise Practice Sheet (Exericise-I) Level-II (Straight Objective Type Questions)|31 Videos
  • PERIODICITY AND EXTREME VALUES

    AAKASH SERIES|Exercise Lecture Sheet (Exercise - II )(Statement Type Questions)|3 Videos
  • PERIODICITY AND EXTEME VALUES

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE) LEVEL-I(MAIN) Extreme values ( Single answer type questions )|23 Videos
  • PERIODICITY EXTREME VALUES AND GRAPHS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|33 Videos

Similar Questions

Explore conceptually related problems

The maximum value of 7 cos x- 24 sin x is

f (x) = 10 cos x + (13 + 2x) sin x implies f''(x) + f(x) =

If f(x) = |cos x - sin x| , then f^(1)(pi/4) =

If sin x ( cos ""(x)/( 4) - 2 sin x) + ( 1 + sin "" (x)/( 4) - 2 cos x) cos x = 0 then x =

If f(x)=(cos^(2)x +sin^(4)x)/(sin^(2)x +cos^(4)x) for x in R then f(2018)=

The minimum value of 7 cos x- 24 sin x +5 is

If 7 cos ^(2) x + sin x cos x - 3 then x =

If f (x) =(cos^(2) x+ sin ^(4) x )/(sin^(2) x + cos^(4) x) AA x in R then show that f (2012) = 1.