Home
Class 12
MATHS
Evaluate the determinants below in examp...

Evaluate the determinants below in examples number 1 and 2
`|{:(x^2-x+1,x-1),(x+1,x+1):}|`

Text Solution

Verified by Experts

The correct Answer is:
`thereforeD=x^3-x^2+2`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Solutions of NCERT Exemplar Problems (Long Answer Type Questions)|6 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Solutions of NCERT Exemplar Problems (Objective type Questions)|14 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Textbook Illustrations for Practice work|34 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 5 (Section-D)|4 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-D)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate {:[(x, x+1),(x-1 ,x)]:}

Using the property of determinants andd without expanding in following exercises 1 to 7 prove that |{:(1,x,x^2),(x^2,1,x),(x,x^2,1):}|=(1-x^3)^2

Using the properties of determinants, prove the following |{:((x-2)^2,(x-1)^2,x^2),((x-1)^2,x^2,(x+1)^2),(x^2,(x+1)^2,(x+2)^2):}|=-8

Find lim_(xrarr1)f(x) , where f(x)={{:(x^(2)-1",",xle1),(-x^(2)-1",",xgt1):}

Find int(x^(4)dx)/((x-1)(x^(2)+1))

If |{:(1,2,x),(1,1,1),(2,1,-1):}|=0 then find x.

If x_(1),x_(2) "and" y_(1),y_(2) are the roots of the equations 3x^(2) -18x+9=0 "and" y^(2)-4y+2=0 the value of the determinant |{:(x_(1)x_(2),y_(1)y_(2),1),(x_(1)+x_(2),y_(1)+y_(2),2),(sin(pix_(1)x_(2)),cos (pi//2y_(1)y_(2)),1):}| is

Find all the points of discontinuity of the function f defined by {{:(x+2," if "x lt 1),(0," if "x=1),(x-2," if "x gt 1):} .

If a,b,c and d are the roots of the equation x^(4)+2x^(3)+4x^(2)+8x+16=0 the value of the determinant |{:(1+a,1,1,1),(1,1+b,1,1),(1,1,1+c,1),(1,1,1,1+d):}| is

If x,y,z in R , then the value of determinant |{:((2^x+2^(-x))^2,(2^x-2^(-x))^2,1),((3^x+3^(-x))^2,(3^x-3^(-x))^2,1),((4^x+4^(-x))^2,(4^x-4^(-x))^2,1):}| is equal to "............"