Home
Class 11
PHYSICS
Ifvec(a)=(ax(hat(i)))+(ay(hat(j)))+(az (...

If`vec(a)=(a_x(hat(i)))+(a_y(hat(j)))+(a_z (hat(k)))` and `vec(b)=(b_x(hat(i)))+(b_y(hat(j)))+(b_z (hat(k)))`,obtain `vec(a)X vec(b)` in terms of rectangular components.

Answer

Step by step text solution for Ifvec(a)=(a_x(hat(i)))+(a_y(hat(j)))+(a_z (hat(k))) and vec(b)=(b_x(hat(i)))+(b_y(hat(j)))+(b_z (hat(k))),obtain vec(a)X vec(b) in terms of rectangular components. by PHYSICS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SAY-2017 QUESTION PAPER

    MAXIMUM PUBLICATION|Exercise EXERCISE|241 Videos
  • THERMAL PROPERTIES OF MATTER

    MAXIMUM PUBLICATION|Exercise EXERCISE|56 Videos

Similar Questions

Explore conceptually related problems

Let vec(a)=hat(i)+hat(j)+hat(k),vec(b)=hat(i)-hat(j)+2hat(k) , and vec(c)=xhat(i)+(x-2)hat(j)-hat(k) . If the vector vec(c ) lies in the plane of vec(a) and vec(b) , then x equals

Let vec(a)=hat(i)+2hat(j)+hat(k),vec(b)=hat(i)-hat(j)+hat(k) and vec(c )=hat(i)+hat(j)-hat(k) . A vector in the plane of vec(a) and vec(b) whose projection on vec(c ) is 1//sqrt(3) is

Knowledge Check

  • If vec(a)=(hat(i)+hat(j)+hat(k)),vec(a)*vec(b)=1 and vec(a)xxvec(b)=hat(j)-hat(k) , then vec(b) is

    A
    `hat(i)-hat(j)+hat(k)`
    B
    `2hat(j)-hat(k)`
    C
    `hat(i)`
    D
    `2hat(i)`
  • Let vec(a)=hat(i)-hat(k),vec(b)=xhat(i)+hat(j)+(1-x)hat(k) , and vec(c)=yhat(i)+xhat(j)+(1+x-y)hat(k) . Then [vec(a)vec(b)vec(c)] depends on

    A
    only y
    B
    only `x`
    C
    both `x` and y
    D
    neither `x` nor y
  • If vec(a) and vec(b)= 3hat(i) + 6hat(j) + 6hat(k) are collinear and vec(a).vec(b)=27 , then vec(a) is equal to

    A
    `3(hat(i)+hat(j)+hat(k))`
    B
    `hat(i)+2hat(j)+2hat(k)`
    C
    `2hat(i)+2hat(j)+2hat(k)`
    D
    `hat(i)+3hat(j)+3hat(k)`
  • Similar Questions

    Explore conceptually related problems

    The value of x for which the angle between vec(a)=2x^(2)hat(i)+4xhat(j)+hat(k) and vec(b)=7hat(i)-2hat(j)+xhat(k) is obtuse and the angle between vec(b) and the z-axis is acute and less than pi//6 is

    If vec(a)=2hat(i)-3hat(j)+phat(k) and vec(a) times vec(b)=4hat(i)+2hat(j)-2hat(k) , then p is :a)0 b)-1 c)1 d)2

    If vec(A)=hat(i)+2hat(j)+3hat(k), vec(B)=-hat(i)+2hat(j)+hat(k) and vec(C)=3hat(i)+hat(j)," then "vec(A)+tvec(B) is perpendicular to vec(C) , if t is equal to :

    Let vec(c ) be a unit vector coplanar with vec(a)=hat(i)-hat(j)+2hat(k) and vec(b)=2hat(i)-hat(j)+hat(k) such that vec(c ) is perpendicular to vec(a) . Then the projection of vec(c ) along vec(b) is

    If vec(a) satisfies vec(a)xx(hat(i)+2hat(j)+hat(k))=hat(i)-hat(k) , then vec(a) is equal to